Abstract

We experimentally demonstrate a far-off resonant mode-locked Raman laser at 1196nm pumped by an actively mode-locked external-cavity diode laser (ML-ECDL) at 799nm. Using the Pound–Drever–Hall locking technique, we simultaneously frequency locked all the longitudinal modes from the ML-ECDL to a high-finesse Raman cavity filled with diatomic hydrogen (H2). When operating at an average power level slightly above the mode-locked (ML) threshold (which is comparable to the cw threshold), each of the nine pump modes, taken on its own, is below the cw lasing threshold. However, since the modes are in-phase, they can augment each other through four-wave-mixing processes, causing all of them to lase. The measured threshold for this process is approximately 5.4mW. The FWHM of the ML Stokes output is 310ps.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
    [CrossRef]
  2. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, "Diode-pumped nonresonant continuous-wave Raman laser in H2 using resonant optical feedback stabilization," Opt. Lett. 24, 1130-1132 (1999).
    [CrossRef]
  3. L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, "Widely tunable continuous wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Opt. Lett. 25, 472-474 (2000).
    [CrossRef]
  4. Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
    [CrossRef]
  5. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
    [CrossRef]
  6. J. K. Brasseur, "Construction and noise studies of a continuous wave Raman laser," Ph.D. dissertation (Montana State University, 1998).
  7. L. Meng, "Continuous-wave Raman laser in H2 semiclassical theory and diode-pumping experiments," Ph.D. dissertation (Montana State University, 2002).
  8. W. K. Bischel and M. J. Dyer, "Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2," J. Opt. Soc. Am. B 5, 677-682 (1986).
    [CrossRef]
  9. W. K. Bischel and M. J. Dyer, "Temperature dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2," Phys. Rev. A 5, 3113-3123 (1986).
    [CrossRef]
  10. S. Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
    [CrossRef]
  11. P. J. Delfyett and C. H. Lee, "High peak power picosecond pulse generation for AlGaAs external cavity mode-locked semiconductor laser and traveling-wave amplifier," Appl. Phys. Lett. 57, 971-973 (1990).
    [CrossRef]
  12. Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
    [CrossRef]
  13. T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
    [CrossRef]
  14. E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
    [CrossRef]
  15. Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
    [CrossRef]
  16. L. Gao, S. Xiong, B. Li, and Y. Zhang, "High reflectivity measurement with cavity ring-down technique," Advances in Optical Thin Films II, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5963 (2005).
  17. Manufacturer's data show Rp(s)≈0.99980, Tp=40+/-5 ppm, and Ts=30+/-5 ppm.
  18. We see eight harmonic beat signals from the pump source through the rf spectrum analyzer, so the number of pump mode is at least nine.
  19. The power ratio of these nine pump modes can get through scanning the HFC to resolve different modes when mismatching the rf synthesizer signal to the FSR of HFC. The ratio we use here is 0.4315:0.2538:0.2031:0.0761:0.01692:0.0152: 0.0017:0.0008:0.0008.
  20. J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
    [CrossRef]

2007 (2)

Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
[CrossRef]

2006 (1)

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
[CrossRef]

2001 (1)

E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

2000 (2)

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
[CrossRef]

L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, "Widely tunable continuous wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Opt. Lett. 25, 472-474 (2000).
[CrossRef]

1999 (2)

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
[CrossRef]

P. A. Roos, J. K. Brasseur, and J. L. Carlsten, "Diode-pumped nonresonant continuous-wave Raman laser in H2 using resonant optical feedback stabilization," Opt. Lett. 24, 1130-1132 (1999).
[CrossRef]

1998 (2)

S. Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
[CrossRef]

1990 (1)

P. J. Delfyett and C. H. Lee, "High peak power picosecond pulse generation for AlGaAs external cavity mode-locked semiconductor laser and traveling-wave amplifier," Appl. Phys. Lett. 57, 971-973 (1990).
[CrossRef]

1986 (2)

W. K. Bischel and M. J. Dyer, "Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2," J. Opt. Soc. Am. B 5, 677-682 (1986).
[CrossRef]

W. K. Bischel and M. J. Dyer, "Temperature dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2," Phys. Rev. A 5, 3113-3123 (1986).
[CrossRef]

Abeles, J. H.

T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
[CrossRef]

Arnold, S.

S. Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Bischel, W. K.

W. K. Bischel and M. J. Dyer, "Temperature dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2," Phys. Rev. A 5, 3113-3123 (1986).
[CrossRef]

W. K. Bischel and M. J. Dyer, "Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2," J. Opt. Soc. Am. B 5, 677-682 (1986).
[CrossRef]

Black, E. D.

E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

Boshier, M. G.

S. Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Brasseur, J. K.

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
[CrossRef]

P. A. Roos, J. K. Brasseur, and J. L. Carlsten, "Diode-pumped nonresonant continuous-wave Raman laser in H2 using resonant optical feedback stabilization," Opt. Lett. 24, 1130-1132 (1999).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
[CrossRef]

J. K. Brasseur, "Construction and noise studies of a continuous wave Raman laser," Ph.D. dissertation (Montana State University, 1998).

Braun, A. M.

T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
[CrossRef]

Carlsten, J. L.

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
[CrossRef]

Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
[CrossRef]

L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, "Widely tunable continuous wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Opt. Lett. 25, 472-474 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
[CrossRef]

P. A. Roos, J. K. Brasseur, and J. L. Carlsten, "Diode-pumped nonresonant continuous-wave Raman laser in H2 using resonant optical feedback stabilization," Opt. Lett. 24, 1130-1132 (1999).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
[CrossRef]

Delfyett, P. J.

P. J. Delfyett and C. H. Lee, "High peak power picosecond pulse generation for AlGaAs external cavity mode-locked semiconductor laser and traveling-wave amplifier," Appl. Phys. Lett. 57, 971-973 (1990).
[CrossRef]

T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
[CrossRef]

DePriest, C. M.

T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
[CrossRef]

Dyer, M. J.

W. K. Bischel and M. J. Dyer, "Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2," J. Opt. Soc. Am. B 5, 677-682 (1986).
[CrossRef]

W. K. Bischel and M. J. Dyer, "Temperature dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2," Phys. Rev. A 5, 3113-3123 (1986).
[CrossRef]

Gao, L.

L. Gao, S. Xiong, B. Li, and Y. Zhang, "High reflectivity measurement with cavity ring-down technique," Advances in Optical Thin Films II, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5963 (2005).

Lee, C. H.

P. J. Delfyett and C. H. Lee, "High peak power picosecond pulse generation for AlGaAs external cavity mode-locked semiconductor laser and traveling-wave amplifier," Appl. Phys. Lett. 57, 971-973 (1990).
[CrossRef]

Li, B.

L. Gao, S. Xiong, B. Li, and Y. Zhang, "High reflectivity measurement with cavity ring-down technique," Advances in Optical Thin Films II, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5963 (2005).

Meng, L.

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
[CrossRef]

L. Meng, "Continuous-wave Raman laser in H2 semiclassical theory and diode-pumping experiments," Ph.D. dissertation (Montana State University, 2002).

Meng, L. S.

L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, "Widely tunable continuous wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Opt. Lett. 25, 472-474 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
[CrossRef]

Murphy, S.

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
[CrossRef]

Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
[CrossRef]

Repasky, K.

Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
[CrossRef]

Repasky, K. S.

L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, "Widely tunable continuous wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Opt. Lett. 25, 472-474 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
[CrossRef]

Roos, P. A.

L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, "Widely tunable continuous wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Opt. Lett. 25, 472-474 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
[CrossRef]

P. A. Roos, J. K. Brasseur, and J. L. Carlsten, "Diode-pumped nonresonant continuous-wave Raman laser in H2 using resonant optical feedback stabilization," Opt. Lett. 24, 1130-1132 (1999).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
[CrossRef]

Wilson, J. S.

S. Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Xiong, S.

L. Gao, S. Xiong, B. Li, and Y. Zhang, "High reflectivity measurement with cavity ring-down technique," Advances in Optical Thin Films II, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5963 (2005).

Xiong, Y.

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
[CrossRef]

Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
[CrossRef]

Yilmaz, T.

T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
[CrossRef]

Zhang, Y.

L. Gao, S. Xiong, B. Li, and Y. Zhang, "High reflectivity measurement with cavity ring-down technique," Advances in Optical Thin Films II, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5963 (2005).

Am. J. Phys. (1)

E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

P. J. Delfyett and C. H. Lee, "High peak power picosecond pulse generation for AlGaAs external cavity mode-locked semiconductor laser and traveling-wave amplifier," Appl. Phys. Lett. 57, 971-973 (1990).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Frequency tuning characteristics of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 7, 1229-1232 (2000).
[CrossRef]

Y. Xiong, S. Murphy, J. L. Carlsten, and K. Repasky, "Theory of a far-off resonance mode-locked Raman laser in H2 with high finesse cavity enhancement," J. Opt. Soc. Am. B 24, 2055-2063 (2007).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 6, 1667-1673 (1998).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 8, 1305-1312 (1999).
[CrossRef]

W. K. Bischel and M. J. Dyer, "Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2," J. Opt. Soc. Am. B 5, 677-682 (1986).
[CrossRef]

Opt. Eng. (Bellingham) (2)

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 45, 124205 (2006).
[CrossRef]

Y. Xiong, S. Murphy, K. Repasky, and J. L. Carlsten, "Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser," Opt. Eng. (Bellingham) 46, 054203 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

W. K. Bischel and M. J. Dyer, "Temperature dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2," Phys. Rev. A 5, 3113-3123 (1986).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Arnold, J. S. Wilson, and M. G. Boshier, "A simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Other (7)

J. K. Brasseur, "Construction and noise studies of a continuous wave Raman laser," Ph.D. dissertation (Montana State University, 1998).

L. Meng, "Continuous-wave Raman laser in H2 semiclassical theory and diode-pumping experiments," Ph.D. dissertation (Montana State University, 2002).

L. Gao, S. Xiong, B. Li, and Y. Zhang, "High reflectivity measurement with cavity ring-down technique," Advances in Optical Thin Films II, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5963 (2005).

Manufacturer's data show Rp(s)≈0.99980, Tp=40+/-5 ppm, and Ts=30+/-5 ppm.

We see eight harmonic beat signals from the pump source through the rf spectrum analyzer, so the number of pump mode is at least nine.

The power ratio of these nine pump modes can get through scanning the HFC to resolve different modes when mismatching the rf synthesizer signal to the FSR of HFC. The ratio we use here is 0.4315:0.2538:0.2031:0.0761:0.01692:0.0152: 0.0017:0.0008:0.0008.

T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., J. H. Abeles, and A. M. Braun, "Stabilization of a mode-locked semiconductor laser optical frequency comb using the Pound-Drever-Hall scheme," in Enabling Photonic Technologies for Aerospace Applications V, A.R.Pirich, E.W.Taylor, and M.J.Hayduk, eds., Proc. SPIE 5104, 18-123 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Interaction of a mode-locked laser with hydrogen. The pump wavelength is at 799 nm and the Stokes emission is at 1196 nm .

Fig. 2
Fig. 2

Estimated optical spectrums of cw-ECDL and ML-ECDL. (a) For the Littrow configuration, the cw-ECDL has a linewidth of 1 2 MHz . (b) For the ML-ECDL, the optical spectrum is made of several longitudinal modes, each of which has the same linewidth as the mode of the cw-ECDL and are roughly separated by a gigahertz.

Fig. 3
Fig. 3

Schematic of experimental setup. (G—grating, M—mirror, FI—Faraday isolator, HWP—half-wave plate, PBS—polarizing beam splitter, SM—single-mode, PM—polarization maintaining, OSA—optical spectrum analyzer, QWP—quarter-wave plate, EOM—electro-optic modulator, TA—tapered amplifier, IC—input coupler, OC—output coupler, CL—cylindrical lens, D1—detector for error signal, D2 and D3—detectors for the pump and Stokes transmission). Dotted lines represent electronic wires.

Fig. 4
Fig. 4

(Color) Experimental data and theoretical fits of the cw-ECDL pumped Raman laser. Solid circles and stars represent the cavity transmitted cw pump ( 799 nm ) and Stokes ( 1196 nm ) power. The dashed curves are the theoretical fitting. The measured threshold is 4.79 mW ; the actual threshold is 3.89 mW because of the 81.3% coupling efficiency.

Fig. 5
Fig. 5

(Color) Experimental data and theoretical fits of the ML-ECDL pumped Raman laser. Solid circles are the cavity transmitted ML Stokes power. The solid curve is the theoretical fit with plane wave gain coefficient α = 1.51 × 10 9 cm W . The dashed curve is the theoretical fit with α = 0.72 × 10 9 cm W . In this case, the actual threshold is approximately 5.4 mW .

Fig. 6
Fig. 6

Transmitted ML Stokes optical spectrum.

Fig. 7
Fig. 7

Beat signals from the transmitted pump. There are eight harmonic signals with the first at approximately 840.66 MHz (rf modulation frequency), which means the transmitted pump pulse is made of at least nine longitudinal modes.

Fig. 8
Fig. 8

Beat signals from the transmitted Stokes. There are seven harmonic signals with the first at approximately 840.66 MHz (rf modulation frequency), which means the transmitted Stokes pulse is made of at least nine longitudinal modes.

Fig. 9
Fig. 9

Temporal pulses of the input pump, transmitted pump, and transmitted Stokes beams.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ 31 = i g 31 β = M + 1 M 1 e i β Ω t α = 1 M E s α * E p ( α β ) γ 31 + i β Ω ,
E ̇ p n = L p n E p n g p n g 31 β = 1 M E s β α = 1 M E s α * E p [ α ( β n ) ] γ 31 + i ( β n ) Ω + K ( E p i n ( n ) , t ) ,
E ̇ s n = L s n E s n + g s n g 31 β = 1 M E p β α = 1 M ( E s [ α ( β n ) ] * E p α ) * γ 31 + i ( β n ) Ω .

Metrics