Abstract

The optical power flow around a plasmonic particle has been a topic of research interest over the years [see e.g., Am. J. Phys. 51, 323 (1983) ; Opt. Express 13, 8372 (2005) ]. Here we revisit this problem with an emphasis on higher-order resonances, and we present the theoretical results of our analysis for such power-flow distribution for plasmonic nanoparticles at their multipolar resonances. Results for the second and third orders of resonance show optical power-flow patterns that are significantly different from that of the first-order resonance inside and around plasmonic superdirective nanoparticles, with multicenter vortices, saddle points, and saddle lines and with an anomalous circulation of power resembling higher-order modes in a resonant cavity. A potential application of these optical flow patterns to trap or move a neighboring nanoparticle is also briefly suggested.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription