M. G. Silveirinha, A. Alù, and N. Engheta, "Parallel plate metamaterials for cloaking structures," Phys. Rev. E 75, 036603 (2007).

[CrossRef]

A. Alù and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).

[CrossRef]
[PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).

[CrossRef]

M. V. Bashevoy, V. A. Federov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express 13, 8372-8379 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers," J. Appl. Phys. 97, 094310 (2005).

[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

[CrossRef]
[PubMed]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999).

[CrossRef]

M. I. Tribelskii, "Resonant scattering of light by small particles," Sov. Phys. JETP 59, 534-536 (1984).

C. F. Bohren, "How can a particle absorb more than the light incident on it?," Am. J. Phys. 51, 323-327 (1983).

[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

[CrossRef]

D. Bohm and E. P. Gross, "Theory of plasma oscillations. A. Origin of medium-like behavior," Phys. Rev. 75, 1851-1864 (1949).

[CrossRef]

G. Mie, "Considerations on the optics of turbid media, especially colloidal metal sols," Ann. Phys. 25, 377-442 (1908).

[CrossRef]

M. Abramowitz and I. A. Stegun, eds., "Spherical Bessel functions," in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), Subsection 10.1, pp. 437-442.

M. G. Silveirinha, A. Alù, and N. Engheta, "Parallel plate metamaterials for cloaking structures," Phys. Rev. E 75, 036603 (2007).

[CrossRef]

A. Alù and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).

[CrossRef]
[PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).

[CrossRef]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers," J. Appl. Phys. 97, 094310 (2005).

[CrossRef]

A. Alù and N. Engheta, "Enhanced directivity from sub-wavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials," IEEE Trans. Antennas Propag. (to be published).

D. Bohm and E. P. Gross, "Theory of plasma oscillations. A. Origin of medium-like behavior," Phys. Rev. 75, 1851-1864 (1949).

[CrossRef]

C. F. Bohren, "How can a particle absorb more than the light incident on it?," Am. J. Phys. 51, 323-327 (1983).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

[CrossRef]

A. Alù and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).

[CrossRef]
[PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, "Parallel plate metamaterials for cloaking structures," Phys. Rev. E 75, 036603 (2007).

[CrossRef]

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).

[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers," J. Appl. Phys. 97, 094310 (2005).

[CrossRef]

A. Alù and N. Engheta, "Enhanced directivity from sub-wavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials," IEEE Trans. Antennas Propag. (to be published).

D. Bohm and E. P. Gross, "Theory of plasma oscillations. A. Origin of medium-like behavior," Phys. Rev. 75, 1851-1864 (1949).

[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999).

[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999).

[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999).

[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

G. Mie, "Considerations on the optics of turbid media, especially colloidal metal sols," Ann. Phys. 25, 377-442 (1908).

[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999).

[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

[CrossRef]
[PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, "Parallel plate metamaterials for cloaking structures," Phys. Rev. E 75, 036603 (2007).

[CrossRef]

M. Abramowitz and I. A. Stegun, eds., "Spherical Bessel functions," in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), Subsection 10.1, pp. 437-442.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

M. I. Tribelskii, "Resonant scattering of light by small particles," Sov. Phys. JETP 59, 534-536 (1984).

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

C. F. Bohren, "How can a particle absorb more than the light incident on it?," Am. J. Phys. 51, 323-327 (1983).

[CrossRef]

G. Mie, "Considerations on the optics of turbid media, especially colloidal metal sols," Ann. Phys. 25, 377-442 (1908).

[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 1063-1065 (1999).

[CrossRef]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers," J. Appl. Phys. 97, 094310 (2005).

[CrossRef]

M. V. Bashevoy, V. A. Federov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express 13, 8372-8379 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).

[CrossRef]
[PubMed]

D. Bohm and E. P. Gross, "Theory of plasma oscillations. A. Origin of medium-like behavior," Phys. Rev. 75, 1851-1864 (1949).

[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

[CrossRef]

Z. B. Wang, B. S. Lukyanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B 70, 035418 (2004).

[CrossRef]

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).

[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, "Parallel plate metamaterials for cloaking structures," Phys. Rev. E 75, 036603 (2007).

[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

[CrossRef]
[PubMed]

M. I. Tribelskii, "Resonant scattering of light by small particles," Sov. Phys. JETP 59, 534-536 (1984).

By "incident on the particle" the problem is considered in terms of geometrical optics.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

A. Alù and N. Engheta, "Enhanced directivity from sub-wavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials," IEEE Trans. Antennas Propag. (to be published).

M. Abramowitz and I. A. Stegun, eds., "Spherical Bessel functions," in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), Subsection 10.1, pp. 437-442.

We note that the analysis in expands the whole scattered field in the Taylor approximation, mixing together the different Mie spherical harmonics. Although this procedure eventually ensures numerical convergence, it requires a much higher number of terms in order to predict the correct results near the resonance of the nanoparticle, similar to the cases considered here. This explains the disagreement between our full-wave results and the approximate calculation in . Also contrary to the claim mentioned in that a correct evaluation of the power-flow distribution would require multiple Mie orders, we believe that this is not the case, in the sense that, even if in their Taylor expansion higher-order terms are needed, with a full-wave Mie harmonic expansion one would require one single resonant harmonic to predict the overall power distribution, as has been shown here.