Abstract

Copropagating core and cladding modes in optical fibers can be coupled by a grating with a period greatly exceeding the wavelength, since their propagation constants are similar. In contrast to conventional long-period gratings, in which the modulation is imposed by exposing a photosensitive core to ultraviolet light, we have created chiral long-period gratings with single- or double-helix symmetry by twisting optical fibers with nonconcentric or noncircular cores, respectively, as they pass through a short heat zone. The difference in symmetry between single- and double-helix gratings is manifested in their polarization properties. The use of these gratings as sensors of liquid level and temperature is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  3. C. B. Probst, A. Bjarklev, and S. B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes," J. Lightwave Technol. 7, 55-61 (1989).
    [CrossRef]
  4. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
    [CrossRef]
  5. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001).
    [CrossRef]
  6. O. V. Ivanov, "Fabrication of long-period fiber gratings by twisting a standard single-mode fiber," Opt. Lett. 30, 3290-3292 (2005).
    [CrossRef]
  7. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
    [CrossRef] [PubMed]
  8. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, 1977, 1994).
  9. K. Robbie, D. J. Broer, and M. J. Brett, "Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure," Nature (London) 399, 764-766 (1999).
    [CrossRef]
  10. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
    [CrossRef]
  11. V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).
  12. S. Khaliq, S. W. James, and R. P. Tatam, "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001).
    [CrossRef]

2005 (1)

2004 (2)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

2003 (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

2001 (2)

1999 (1)

K. Robbie, D. J. Broer, and M. J. Brett, "Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure," Nature (London) 399, 764-766 (1999).
[CrossRef]

1998 (2)

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

1989 (1)

C. B. Probst, A. Bjarklev, and S. B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes," J. Lightwave Technol. 7, 55-61 (1989).
[CrossRef]

Andreasen, S. B.

C. B. Probst, A. Bjarklev, and S. B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes," J. Lightwave Technol. 7, 55-61 (1989).
[CrossRef]

Bjarklev, A.

C. B. Probst, A. Bjarklev, and S. B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes," J. Lightwave Technol. 7, 55-61 (1989).
[CrossRef]

Brett, M. J.

K. Robbie, D. J. Broer, and M. J. Brett, "Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure," Nature (London) 399, 764-766 (1999).
[CrossRef]

Broer, D. J.

K. Robbie, D. J. Broer, and M. J. Brett, "Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure," Nature (London) 399, 764-766 (1999).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, 1977, 1994).

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

Churikov, V. M.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Dianov, E.

Fan, B.

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Genack, A. Z.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Ivanov, O. V.

James, S. W.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

S. Khaliq, S. W. James, and R. P. Tatam, "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Khaliq, S.

Kopp, V. I.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
[CrossRef]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Neugroschl, D.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

Okhotnikov, O.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Probst, C. B.

C. B. Probst, A. Bjarklev, and S. B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes," J. Lightwave Technol. 7, 55-61 (1989).
[CrossRef]

Rego, G.

Robbie, K.

K. Robbie, D. J. Broer, and M. J. Brett, "Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure," Nature (London) 399, 764-766 (1999).
[CrossRef]

Singer, J.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

Sulimov, V.

Tatam, R. P.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

S. Khaliq, S. W. James, and R. P. Tatam, "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Vithana, H. K. M.

Electron. Lett. (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

J. Lightwave Technol. (2)

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001).
[CrossRef]

C. B. Probst, A. Bjarklev, and S. B. Andreasen, "Experimental verification of microbending theory using mode coupling to discrete cladding modes," J. Lightwave Technol. 7, 55-61 (1989).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Nature (London) (1)

K. Robbie, D. J. Broer, and M. J. Brett, "Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure," Nature (London) 399, 764-766 (1999).
[CrossRef]

Opt. Lett. (3)

Photonics Spectra (1)

V. I. Kopp, A. Z. Genack, V. M. Churikov, J. Singer, and N. Chao, "Chiral fiber gratings polarize light," Photonics Spectra 38, 78 (2004).

Science (1)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, "Chiral fiber gratings," Science 305, 74-75 (2004).
[CrossRef] [PubMed]

Other (2)

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, 1977, 1994).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Side image and schematic of face image of the (a) double and (b) single-helix gratings studied. Note the offset of the core center in (b) from the fiber center.

Fig. 2
Fig. 2

Ratio of right-to-left circularly polarized transmission through a double-helix CLPG. The inset shows the shift in the spectrum when the fiber is immersed in gasoline.

Fig. 3
Fig. 3

Polarization-insensitive transmission through a single-helix CLPG.

Fig. 4
Fig. 4

Transmission through a double-helix LPG at 1484.55 nm versus gasoline level.

Fig. 5
Fig. 5

Transmission through a single-helix LPG at 1656 nm versus alcohol level.

Fig. 6
Fig. 6

Spectra of transmission dips of single-helix CLPG covered with alcohol at different heights. The dip with constant width shifts continuously with changing immersion.

Fig. 7
Fig. 7

Wavelength of transmission dip of single-helix CLPG versus temperature. The temperature was measured with a thermocouple.

Fig. 8
Fig. 8

Wavelength of transmission dip of single-helix CLPG versus temperature. The temperature was continuously cycled around 400 ° C for 24 h after the fiber was annealed for 2 h at 800 ° C .

Tables (1)

Tables Icon

Table 1 Key Parameters of Single and Double-Helix CLPGs

Metrics