Abstract

A theoretical model of a new integrated planar surface plasmon–polariton (SPP) refractive index sensor with a long period grating (LPG) is presented and comprehensively investigated. The main principle of operation of this device is based on high-efficiency energy transfer between a p-polarized guided mode propagating in a waveguide layer of the structure and copropagating SPP supported by a metal layer separated from the waveguide layer by a buffer. The high-efficiency energy transfer is realized by means of a properly designed LPG imprinted in the waveguide and buffer layers. This device is compact and free from any moving parts and can be easily integrated into any planar scheme. Our simulations are based on the coupled-mode theory and done at the well-developed and commercialized telecom wavelengths in the 1500nm window.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, 1988).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
    [CrossRef]
  4. C. Nylander, B. Liedborg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982/83).
    [CrossRef]
  5. H. Kano and W. Knoll, "Locally excited surface-plasmon-polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1988).
    [CrossRef]
  6. H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
    [CrossRef]
  7. D. Kim, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005).
    [CrossRef] [PubMed]
  8. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003).
    [CrossRef] [PubMed]
  9. S. Patskovsky, A. V. Kabashin, and M. Meunier, "Properties and sensing characteristics of surface-plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
    [CrossRef]
  10. E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23, 2135-2136 (1968).
  11. E. Kretschmann, "Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
    [CrossRef]
  12. I. R. Hooper and J. B. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. A 20, 836-843 (2003).
    [CrossRef]
  13. J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
    [CrossRef]
  14. G. Nemova and R. Kashyap, "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor," Opt. Lett. 31, 2118-2120 (2006).
    [CrossRef] [PubMed]
  15. Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007).
    [CrossRef] [PubMed]
  16. Y.-J. He, Y.-L. Lo, and J.-F. Huang, "Optical-fiber surface-plasmon-resonance sensor employing long-period fiber grating in multiplexing," J. Opt. Soc. Am. B 23, 801-811 (2006).
    [CrossRef]
  17. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  18. G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007).
    [CrossRef]
  19. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  21. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
    [CrossRef]
  22. H. Kogelnik, "Theory of optical waveguides," in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
    [CrossRef]

2007

Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007).
[CrossRef] [PubMed]

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007).
[CrossRef]

2006

2005

2003

2000

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

1999

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

1988

H. Kano and W. Knoll, "Locally excited surface-plasmon-polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1988).
[CrossRef]

1983

1973

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

1972

E. Kretschmann, "Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

1968

E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23, 2135-2136 (1968).

Abdelmalek, F.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Albert, J.

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Ctyroky, J.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Ecke, W.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Fu, C.

He, Y.-J.

Hooper, I. R.

Huang, J.-F.

Kabashin, A. V.

Kano, H.

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

H. Kano and W. Knoll, "Locally excited surface-plasmon-polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1988).
[CrossRef]

Kashyap, R.

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007).
[CrossRef]

G. Nemova and R. Kashyap, "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor," Opt. Lett. 31, 2118-2120 (2006).
[CrossRef] [PubMed]

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kim, D.

Knoll, W.

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

H. Kano and W. Knoll, "Locally excited surface-plasmon-polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1988).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Theory of optical waveguides," in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
[CrossRef]

Kretschmann, E.

E. Kretschmann, "Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23, 2135-2136 (1968).

Lee, B. J.

Liedborg, B.

C. Nylander, B. Liedborg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982/83).
[CrossRef]

Lind, T.

C. Nylander, B. Liedborg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982/83).
[CrossRef]

Lo, Y.-L.

Long, L. L.

Luong, J. H. T.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Meunier, M.

Nemova, G.

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007).
[CrossRef]

G. Nemova and R. Kashyap, "Fiber-Bragg-grating-assisted surface plasmon-polariton sensor," Opt. Lett. 31, 2118-2120 (2006).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedborg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982/83).
[CrossRef]

Ordal, M. A.

Park, K.

Patskovsky, S.

Raether, H.

E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23, 2135-2136 (1968).

H. Raether, Surface Plasmons (Springer, 1988).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Sambles, J. B.

Shevchenko, Y. Y.

Usbeck, K.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Ward, C. A.

Yariv, A.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

Zhang, Z. M.

Appl. Opt.

IEEE J. Quantum Electron.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

H. Kano and W. Knoll, "Locally excited surface-plasmon-polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1988).
[CrossRef]

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82 (2007).
[CrossRef]

E. Kretschmann, "Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modeling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Sens. Actuators

C. Nylander, B. Liedborg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982/83).
[CrossRef]

Z. Naturforsch.

E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23, 2135-2136 (1968).

Other

H. Raether, Surface Plasmons (Springer, 1988).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

H. Kogelnik, "Theory of optical waveguides," in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sensor structure under consideration. The schematic on the left-hand side shows a magnified area of the structure in the vicinity of the metal layer. GM, guided mode.

Fig. 2
Fig. 2

Dependence of the change in the effective refractive index of the “pure” SPP ( Δ n p ) (caused by a change, Δ n sen = 0.1 , in the refractive index of the sensed medium) on the metal layer thickness ( Δ ) , b = 1 μ m , λ = 1.55 μ m .

Fig. 3
Fig. 3

Dependence of the buffer thickness ( b ) on the grating period ( Λ ) , σ = 1 × 10 3 , Δ = 10 nm , λ res = 1.55 μ m , L = 2.5 cm .

Fig. 4
Fig. 4

Dependence of the LPG transmission dip on the strength of the grating ( σ ) , b = 1 μ m , Δ = 10 nm , λ res = 1.55 μ m , L = 2.5 cm .

Fig. 5
Fig. 5

LPG transmission spectra for different n sen with b = 1 μ m , Δ = 10 nm , L = 2.5 cm , Λ 6.95 μ m , the minima shifts 1.1 nm per 10 3 change in n sen .

Fig. 6
Fig. 6

Dependence of the transmission dip shift ( Δ dip ) on the refractive index of the sensed medium n sen , with b = 1 μ m , Δ = 10 nm , L = 2.5 cm , Λ 6.95 μ m ; the value of the transmission minimum is 30 % .

Fig. 7
Fig. 7

Dependence of the LPG length ( L ) on the strength of the grating ( σ ) corresponding to 30 % transmission minimum for λ res = 1.55 μ m , b = 1 μ m , Δ = 10 nm , Λ 6.9 μ m .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n w , b σ [ 1 + m g cos ( 2 π Λ z ) ] ,
δ g p + κ co co 2 = 0 ,
κ co co = 1 2 k 0 Z 0 σ 0 ( a + b ) H y g ( x ) 2 d x ,
κ co p = 1 2 k 0 Z 0 σ 0 ( a + b ) H y g H y p * d x .
δ n ( n p n g ) .
δ n ( n p + n g ) .
r n p + n g n p n g .

Metrics