Abstract

The improved characteristics of semiconductor optical amplifiers (SOAs) with optical pumping near the transparency (OPNT) are evaluated, and its improving mechanisms are analyzed. The characteristics of saturation behaviors, noise figures, signal-to-noise ratio, and gain recovery time are greatly improved by OPNT, especially for the counterpropagating scheme. The impacts of different wavelengths of a holding beam from absorption to the gain region are investigated contrastively. The maximum value of the small signal gain recovery time is obtained at the transparency wavelength. Also, the quality of the output eye patterns of a cross-gain modulation (XGM) system has been greatly improved by using OPNT, especially for the signal beyond 10Gbits.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Zilkie, J. Meier, P. W. E. Smith, M. Mojahedi, J. S. Aitchison, P. J. Poole, C. N. Allen, P. Barrios, and D. Poitras, "Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 μm," Opt. Express 14, 11453-11459 (2006).
    [CrossRef] [PubMed]
  2. K. Morito, "Output-level control of semiconductor optical amplifier by external light injection," J. Lightwave Technol. 23, 4332-4341 (2005).
    [CrossRef]
  3. G. Giuliani and D. D'Alessandro, "Noise analysis of conventional and gain-clamped semiconductor optical amplifiers," J. Lightwave Technol. 18, 1256-1263 (2000).
    [CrossRef]
  4. K. Inoue and M. Yoshino, "Gain dynamics of a saturated semiconductor laser amplifier with 1.47-/sp/mu/m LD pumping," IEEE Photon. Technol. Lett. 8, 506-508 (1996).
    [CrossRef]
  5. M. Amaya, A. Sharaiha, and J. Le Bihan, "SOA performances in presence of an assist light at gain transparency wavelength in co- and in counter-propagative direction," presented at the 1st International Conference on Information and Communication Technologies from Theory to Applications, Damascus, Syria, April 19-23, 2004.
  6. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
    [CrossRef]
  7. L. San-Liang, G. Pei-Miin, and Y. Chin-Tien, "Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam," IEEE Photon. Technol. Lett. 14, 1713-1715 (2002).
    [CrossRef]
  8. F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
    [CrossRef]
  9. W. W. Tang and C. Shu, "Optical pumping of a semiconductor optical amplifier for wide-band noninverting wavelength conversion," IEEE Photon. Technol. Lett. 17, 1905-1907 (2005).
    [CrossRef]
  10. M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
    [CrossRef]
  11. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
    [CrossRef]
  12. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
    [CrossRef]
  13. G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
    [CrossRef]
  14. A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
    [CrossRef]
  15. R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
    [CrossRef]
  16. M. Yoshino and K. Inoue, "Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection," IEEE Photon. Technol. Lett. 8, 58-59 (1996).
    [CrossRef]
  17. H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, "Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier-Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light," Opt. Lett. 30, 1716-1718 (2005).
    [CrossRef] [PubMed]
  18. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  19. K. Petermann, "Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding," IEEE J. Quantum Electron. 15, 566-570 (1979).
    [CrossRef]
  20. Y. Yamamoto and K. Inoue, "Noise in amplifiers," J. Lightwave Technol. 21, 2895-2915 (2003).
    [CrossRef]
  21. P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," in Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (IEEE, 2001), pp. 119-122.

2006 (2)

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

A. J. Zilkie, J. Meier, P. W. E. Smith, M. Mojahedi, J. S. Aitchison, P. J. Poole, C. N. Allen, P. Barrios, and D. Poitras, "Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 μm," Opt. Express 14, 11453-11459 (2006).
[CrossRef] [PubMed]

2005 (4)

W. W. Tang and C. Shu, "Optical pumping of a semiconductor optical amplifier for wide-band noninverting wavelength conversion," IEEE Photon. Technol. Lett. 17, 1905-1907 (2005).
[CrossRef]

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, "Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier-Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light," Opt. Lett. 30, 1716-1718 (2005).
[CrossRef] [PubMed]

K. Morito, "Output-level control of semiconductor optical amplifier by external light injection," J. Lightwave Technol. 23, 4332-4341 (2005).
[CrossRef]

2004 (1)

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

2003 (3)

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
[CrossRef]

Y. Yamamoto and K. Inoue, "Noise in amplifiers," J. Lightwave Technol. 21, 2895-2915 (2003).
[CrossRef]

2002 (2)

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

L. San-Liang, G. Pei-Miin, and Y. Chin-Tien, "Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam," IEEE Photon. Technol. Lett. 14, 1713-1715 (2002).
[CrossRef]

2001 (1)

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

2000 (2)

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

G. Giuliani and D. D'Alessandro, "Noise analysis of conventional and gain-clamped semiconductor optical amplifiers," J. Lightwave Technol. 18, 1256-1263 (2000).
[CrossRef]

1996 (2)

M. Yoshino and K. Inoue, "Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection," IEEE Photon. Technol. Lett. 8, 58-59 (1996).
[CrossRef]

K. Inoue and M. Yoshino, "Gain dynamics of a saturated semiconductor laser amplifier with 1.47-/sp/mu/m LD pumping," IEEE Photon. Technol. Lett. 8, 506-508 (1996).
[CrossRef]

1979 (1)

K. Petermann, "Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding," IEEE J. Quantum Electron. 15, 566-570 (1979).
[CrossRef]

Adams, M. J.

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

Aitchison, J. S.

Allen, C. N.

Amaya, M.

M. Amaya, A. Sharaiha, and J. Le Bihan, "SOA performances in presence of an assist light at gain transparency wavelength in co- and in counter-propagative direction," presented at the 1st International Conference on Information and Communication Technologies from Theory to Applications, Damascus, Syria, April 19-23, 2004.

Andre, P. S.

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," in Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (IEEE, 2001), pp. 119-122.

Barrios, P.

Brenot, R.

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

Burrus, C.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Chin-Tien, Y.

L. San-Liang, G. Pei-Miin, and Y. Chin-Tien, "Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam," IEEE Photon. Technol. Lett. 14, 1713-1715 (2002).
[CrossRef]

Chung, H. S.

Collin, S.

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

Connelly, M. J.

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

Crottini, A.

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

Dagens, B.

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

D'Alessandro, D.

Dentai, A. G.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Deveaud, B.

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Dreyer, K.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Dupertuis, M. A.

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Emery, J. Y.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Giuliani, G.

Hessler, T. P.

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Inohara, R.

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, "Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier-Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light," Opt. Lett. 30, 1716-1718 (2005).
[CrossRef] [PubMed]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
[CrossRef]

Inoue, K.

Y. Yamamoto and K. Inoue, "Noise in amplifiers," J. Lightwave Technol. 21, 2895-2915 (2003).
[CrossRef]

M. Yoshino and K. Inoue, "Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection," IEEE Photon. Technol. Lett. 8, 58-59 (1996).
[CrossRef]

K. Inoue and M. Yoshino, "Gain dynamics of a saturated semiconductor laser amplifier with 1.47-/sp/mu/m LD pumping," IEEE Photon. Technol. Lett. 8, 506-508 (1996).
[CrossRef]

Joyner, C. H.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Kauer, M.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Le Bihan, J.

M. Amaya, A. Sharaiha, and J. Le Bihan, "SOA performances in presence of an assist light at gain transparency wavelength in co- and in counter-propagative direction," presented at the 1st International Conference on Information and Communication Technologies from Theory to Applications, Damascus, Syria, April 19-23, 2004.

Leuthold, J.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Matsumoto, A.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

Meier, J.

Mojahedi, M.

Moreno, P.

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

Morito, K.

Nishimura, K.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, "Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier-Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light," Opt. Lett. 30, 1716-1718 (2005).
[CrossRef] [PubMed]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
[CrossRef]

Pei-Miin, G.

L. San-Liang, G. Pei-Miin, and Y. Chin-Tien, "Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam," IEEE Photon. Technol. Lett. 14, 1713-1715 (2002).
[CrossRef]

Petermann, K.

K. Petermann, "Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding," IEEE J. Quantum Electron. 15, 566-570 (1979).
[CrossRef]

Pinto, J. L.

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," in Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (IEEE, 2001), pp. 119-122.

Pleumeekers, J. L.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Poitras, D.

Poole, P. J.

Rocha, J. F.

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," in Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (IEEE, 2001), pp. 119-122.

Salleras, F.

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

San-Liang, L.

L. San-Liang, G. Pei-Miin, and Y. Chin-Tien, "Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam," IEEE Photon. Technol. Lett. 14, 1713-1715 (2002).
[CrossRef]

Selbmann, P. E.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Sharaiha, A.

M. Amaya, A. Sharaiha, and J. Le Bihan, "SOA performances in presence of an assist light at gain transparency wavelength in co- and in counter-propagative direction," presented at the 1st International Conference on Information and Communication Technologies from Theory to Applications, Damascus, Syria, April 19-23, 2004.

Shu, C.

W. W. Tang and C. Shu, "Optical pumping of a semiconductor optical amplifier for wide-band noninverting wavelength conversion," IEEE Photon. Technol. Lett. 17, 1905-1907 (2005).
[CrossRef]

Shunk, S.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Smith, P. W. E.

Talli, G.

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

Tang, W. W.

W. W. Tang and C. Shu, "Optical pumping of a semiconductor optical amplifier for wide-band noninverting wavelength conversion," IEEE Photon. Technol. Lett. 17, 1905-1907 (2005).
[CrossRef]

Teixeira, A. J.

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," in Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (IEEE, 2001), pp. 119-122.

Tsurusawa, M.

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
[CrossRef]

Usami, M.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, "Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier-Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light," Opt. Lett. 30, 1716-1718 (2005).
[CrossRef] [PubMed]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
[CrossRef]

Utaka, K.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

Yamamoto, Y.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Yoshino, M.

M. Yoshino and K. Inoue, "Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection," IEEE Photon. Technol. Lett. 8, 58-59 (1996).
[CrossRef]

K. Inoue and M. Yoshino, "Gain dynamics of a saturated semiconductor laser amplifier with 1.47-/sp/mu/m LD pumping," IEEE Photon. Technol. Lett. 8, 506-508 (1996).
[CrossRef]

Zilkie, A. J.

IEEE J. Quantum Electron. (4)

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

K. Petermann, "Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding," IEEE J. Quantum Electron. 15, 566-570 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

A. Crottini, F. Salleras, P. Moreno, M. A. Dupertuis, B. Deveaud, and R. Brenot, "Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme," IEEE Photon. Technol. Lett. 17, 977-979 (2005).
[CrossRef]

R. Inohara, K. Nishimura, M. Tsurusawa, and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light," IEEE Photon. Technol. Lett. 15, 1192-1194 (2003).
[CrossRef]

M. Yoshino and K. Inoue, "Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection," IEEE Photon. Technol. Lett. 8, 58-59 (1996).
[CrossRef]

K. Inoue and M. Yoshino, "Gain dynamics of a saturated semiconductor laser amplifier with 1.47-/sp/mu/m LD pumping," IEEE Photon. Technol. Lett. 8, 506-508 (1996).
[CrossRef]

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).
[CrossRef]

L. San-Liang, G. Pei-Miin, and Y. Chin-Tien, "Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam," IEEE Photon. Technol. Lett. 14, 1713-1715 (2002).
[CrossRef]

F. Salleras, T. P. Hessler, S. Collin, M. A. Dupertuis, B. Deveaud, A. Crottini, and B. Dagens, "Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme," IEEE Photon. Technol. Lett. 16, 1262-1264 (2004).
[CrossRef]

W. W. Tang and C. Shu, "Optical pumping of a semiconductor optical amplifier for wide-band noninverting wavelength conversion," IEEE Photon. Technol. Lett. 17, 1905-1907 (2005).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (3)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

M. Amaya, A. Sharaiha, and J. Le Bihan, "SOA performances in presence of an assist light at gain transparency wavelength in co- and in counter-propagative direction," presented at the 1st International Conference on Information and Communication Technologies from Theory to Applications, Damascus, Syria, April 19-23, 2004.

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," in Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (IEEE, 2001), pp. 119-122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Flowchart of the algorithm for static and dynamic simulations. The dashed box and the dotted box correspond to static and dynamic simulations, respectively.

Fig. 2
Fig. 2

Chip gain versus power of HB for different wavelengths and propagating schemes of HB.

Fig. 3
Fig. 3

Gain spectrum for different types of HB.

Fig. 4
Fig. 4

(a) Carrier density along the longitudinal distance for different probe wavelengths. (b) Chip gain along the longitudinal distance for different probe wavelengths.

Fig. 5
Fig. 5

(a) Carrier density along the longitudinal distance for different probe wavelengths. (b) Chip gain along the longitudinal distance for different probe wavelengths.

Fig. 6
Fig. 6

ASE spectrum envelope for different types of HB.

Fig. 7
Fig. 7

Gain and noise figure versus bias current.

Fig. 8
Fig. 8

Input saturation behavior for different wavelengths and powers of HB.

Fig. 9
Fig. 9

Output saturation behavior for different wavelengths and powers of HB.

Fig. 10
Fig. 10

Carrier density along the longitudinal distance of SOA for different input powers of probe lights. (a) HB injected in a copropagating scheme, (b) HB injected in counterpropagating scheme, and (c) without HB injected.

Fig. 11
Fig. 11

SNR versus power of HB for different wavelengths of HB in a copropagating scheme.

Fig. 12
Fig. 12

SNR versus power of HB for different wavelengths of HB in a counterpropagating scheme.

Fig. 13
Fig. 13

Carrier (left column) and gain (right column) recovery for three types of HB. The bias current is 120 mA . The solid curve, dashed curve, and dotted curve stand for without HB pumping, with HB in a copropagating scheme, and in a counterpropagating scheme, respectively.

Fig. 14
Fig. 14

Carrier (left column) and gain (right column) recovery for three types of HB. The bias current is 200 mA . The solid curve, dashed curve, and dotted curve stand for without HB pumping, with HB in a copropagating scheme, and in a counterpropagating scheme, respectively.

Fig. 15
Fig. 15

Gain recovery time versus wavelength of HB.

Fig. 16
Fig. 16

Gain recovery time versus power of HB for different wavelengths and propagating schemes of HB.

Fig. 17
Fig. 17

Gain recovery time versus bias current for different wavelengths and propagating schemes of HB.

Fig. 18
Fig. 18

Output eye patterns of XGM system. The bias current is 120 mA . The left to right columns are without HB pumping, with 1480 nm HB pumping, and with 1450 nm HB pumping, respectively.

Fig. 19
Fig. 19

Output eye patterns of XGM system. The bias current is 200 mA . The left to right columns are without HB pumping, with 1480 nm HB pumping, and with 1450 nm HB pumping, respectively.

Tables (2)

Tables Icon

Table 1 Symbols and Values for Calculating

Tables Icon

Table 2 Saturation Behavior Improvement

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

g m ( ω 0 ) = c 2 2 n 1 2 ω 2 τ ( 2 m e m hh ( m e + m hh ) ) 3 2 ( ω E g ) 1 2 ( f c ( ω ) f v ( ω ) ) T 2 π [ 1 + ( ω ω 0 ) 2 T 2 2 ] d ω = c 2 2 n 1 2 ω 0 2 τ ( 2 m e m hh ( m e + m hh ) ) 3 2 × ( ω 0 E g ) 1 2 ( f c ( ω 0 ) f ν ( ω 0 ) ) ,
r sp ( ω j ) = 1 π τ ( 2 m e m hh ( m e + m hh ) ) 3 2 ( ω j E g ) 1 2 f c ( ω j ) ( 1 f ν ( ω j ) ) ,
R sp = r sp ( ω ) d ω ,
R sp = j R sp , j = j ν j Δ ν 2 ν j + Δ ν 2 r sp ( ω ) d ν j r sp ( ω j ) Δ ν .
Δ ν = c 2 0 L n eq ( z ) d z .
d n d t = η I e V R ( n ) i R s t i , i ( n ) R ASE ( n ) ,
R ( n ) = R rad + R n rad = ( A rad + A n rad ) n + ( B rad + B n rad ) n 2 + C aug n 3 .
R ASE ( n ) = 2 j g m ( ω j , n ) ν g S j sp = 2 j g m ( ω j , n ) ν g ( S ¯ j sp + + S ¯ j sp ) .
S ¯ j , m ASE = S ¯ j , m ASE + + S ¯ j , m ASE = G m j 1 ln G m j [ S j , m + 1 ASE + S j , m ASE + + β R j sp ( n m ) ν g Γ g m ( ω j , n m ) a int ( n m ) ] β R j sp ( n m ) ν g Γ g m ( ω j , n m ) a int ( n m ) ,
β = λ 3 Δ φ 1 2 4 π 2 π ln 2 n n e n e L ( d Γ ) Δ λ 5 × 10 4 .
G m j = exp [ ( Γ g m ( ω j , n m ) a int ( n m ) ) Δ l ] ,
F = 2 P ASE G h ν B 0 ,
I A s 2 + k A sp ( k ) 2 + 2 A s k A sp ( k ) cos [ ( ω sp ( k ) ω s ) t + θ sp ( k ) θ s ] + 2 k < k A sp ( k ) A sp ( k ) cos [ ( ω sp ( k ) ω sp ( k ) ) t + θ sp ( k ) θ sp ( k ) ] ,

Metrics