Abstract

We performed two-color resonance ionization spectroscopy for studying highly excited states of titanium. We obtained high-resolution spectra of the Rydberg and autoionization series using three intermediate states. To observe the appropriate series, we considered mixed configurations of the intermediate states. The convergence limits of the observed series depended on the intermediate states. Using the Rydberg formula and convergence limit estimation, we could provide a tentative assignment to almost all the fine structure levels in the obtained spectra. From the analyses of the two regions, we derived the ionization potential of titanium as 55072.5±0.1cm1.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aymar, C. H. Greene, and E. Luc-Koenig, "Multichannel Rydberg spectroscopy of complex atoms," Rev. Mod. Phys. 68, 1015-1123 (1996) and references therein.
    [CrossRef]
  2. P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
    [CrossRef]
  3. B. Simard, P. Kowalczyk, and A. M. James, "First ionization potential of tantalum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 50, 846-849 (1994).
    [CrossRef] [PubMed]
  4. A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
    [CrossRef] [PubMed]
  5. J. E. Sohl, Y. Zhu, and R. D. Knight, "Two-color laser photoionization spectroscopy of Ti I: multichannel quantum defect theory analysis and a new ionization potential," J. Opt. Soc. Am. A 7, 9-14 (1990).
    [CrossRef]
  6. R. H. Page and C. S. Gudeman, "Completing the iron period: double-resonance, fluorescence-dip Rydberg spectroscopy and ionization potentials of titanium, vanadium, iron, cobalt, and nickel," J. Opt. Soc. Am. B 7, 1761-1771 (1990).
    [CrossRef]
  7. F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. I. General features," Phys. Rev. A 48, 4429-4440 (1993).
    [CrossRef] [PubMed]
  8. F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. II. Classifications," Phys. Rev. A 48, 4441-4449 (1993).
    [CrossRef] [PubMed]
  9. D. J. Armstrong and F. Robicheaux, "Photoionization of the scandium atom. III. Experimental and theoretical spectra from an excited state," Phys. Rev. A 48, 4450-4460 (1993).
    [CrossRef] [PubMed]
  10. G. Miecznik and C. H. Greene, "Photoabsorption and photoionization of titanium from excited states," J. Opt. Soc. Am. B 13, 244-256 (1996).
    [CrossRef]
  11. L. Matsuoka and S. Hasegawa, "Two-color resonance ionization spectroscopy of Rydberg states of hafnium atoms," Phys. Rev. A 74, 062515 (2006).
    [CrossRef]
  12. R. Ladenburg and S. Levy, "Untersuchungen über die anomale dispersion angeregter gase. VIII. Teil, die übergangswahrscheinlichkeiten der rot=gelben neonlinien (s-p) und die lebensdauer der p=zustände," Z. Phys. 88, 461-468 (1934).
    [CrossRef]
  13. B. S. Malone and W. H. Corcoran, "Transition probability measurements in the blue-near-u.v. spectrum of argon I," J. Quant. Spectrosc. Radiat. Transf. 6, 443-449 (1966).
    [CrossRef]
  14. J. R. Fuhr and W. L. Wiese, "Atomic transition probabilities," in CRC Handbook of Chemistry and Physics, 79th ed., D.R.Lide, ed. (CRC Press, 1998).
  15. J. Sugar and C. Corliss, "Atomic energy levels of the iron period elements: potassium through nickel," J. Phys. Chem. Ref. Data 14(Suppl. 2), 1-664 (1985).

2006 (1)

L. Matsuoka and S. Hasegawa, "Two-color resonance ionization spectroscopy of Rydberg states of hafnium atoms," Phys. Rev. A 74, 062515 (2006).
[CrossRef]

1996 (2)

M. Aymar, C. H. Greene, and E. Luc-Koenig, "Multichannel Rydberg spectroscopy of complex atoms," Rev. Mod. Phys. 68, 1015-1123 (1996) and references therein.
[CrossRef]

G. Miecznik and C. H. Greene, "Photoabsorption and photoionization of titanium from excited states," J. Opt. Soc. Am. B 13, 244-256 (1996).
[CrossRef]

1995 (1)

A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
[CrossRef] [PubMed]

1994 (1)

B. Simard, P. Kowalczyk, and A. M. James, "First ionization potential of tantalum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 50, 846-849 (1994).
[CrossRef] [PubMed]

1993 (3)

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. I. General features," Phys. Rev. A 48, 4429-4440 (1993).
[CrossRef] [PubMed]

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. II. Classifications," Phys. Rev. A 48, 4441-4449 (1993).
[CrossRef] [PubMed]

D. J. Armstrong and F. Robicheaux, "Photoionization of the scandium atom. III. Experimental and theoretical spectra from an excited state," Phys. Rev. A 48, 4450-4460 (1993).
[CrossRef] [PubMed]

1990 (2)

J. E. Sohl, Y. Zhu, and R. D. Knight, "Two-color laser photoionization spectroscopy of Ti I: multichannel quantum defect theory analysis and a new ionization potential," J. Opt. Soc. Am. A 7, 9-14 (1990).
[CrossRef]

R. H. Page and C. S. Gudeman, "Completing the iron period: double-resonance, fluorescence-dip Rydberg spectroscopy and ionization potentials of titanium, vanadium, iron, cobalt, and nickel," J. Opt. Soc. Am. B 7, 1761-1771 (1990).
[CrossRef]

1986 (1)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
[CrossRef]

1985 (1)

J. Sugar and C. Corliss, "Atomic energy levels of the iron period elements: potassium through nickel," J. Phys. Chem. Ref. Data 14(Suppl. 2), 1-664 (1985).

1966 (1)

B. S. Malone and W. H. Corcoran, "Transition probability measurements in the blue-near-u.v. spectrum of argon I," J. Quant. Spectrosc. Radiat. Transf. 6, 443-449 (1966).
[CrossRef]

1934 (1)

R. Ladenburg and S. Levy, "Untersuchungen über die anomale dispersion angeregter gase. VIII. Teil, die übergangswahrscheinlichkeiten der rot=gelben neonlinien (s-p) und die lebensdauer der p=zustände," Z. Phys. 88, 461-468 (1934).
[CrossRef]

Armstrong, D. J.

D. J. Armstrong and F. Robicheaux, "Photoionization of the scandium atom. III. Experimental and theoretical spectra from an excited state," Phys. Rev. A 48, 4450-4460 (1993).
[CrossRef] [PubMed]

Aymar, M.

M. Aymar, C. H. Greene, and E. Luc-Koenig, "Multichannel Rydberg spectroscopy of complex atoms," Rev. Mod. Phys. 68, 1015-1123 (1996) and references therein.
[CrossRef]

Corcoran, W. H.

B. S. Malone and W. H. Corcoran, "Transition probability measurements in the blue-near-u.v. spectrum of argon I," J. Quant. Spectrosc. Radiat. Transf. 6, 443-449 (1966).
[CrossRef]

Corliss, C.

J. Sugar and C. Corliss, "Atomic energy levels of the iron period elements: potassium through nickel," J. Phys. Chem. Ref. Data 14(Suppl. 2), 1-664 (1985).

Fuhr, J. R.

J. R. Fuhr and W. L. Wiese, "Atomic transition probabilities," in CRC Handbook of Chemistry and Physics, 79th ed., D.R.Lide, ed. (CRC Press, 1998).

Greene, C. H.

G. Miecznik and C. H. Greene, "Photoabsorption and photoionization of titanium from excited states," J. Opt. Soc. Am. B 13, 244-256 (1996).
[CrossRef]

M. Aymar, C. H. Greene, and E. Luc-Koenig, "Multichannel Rydberg spectroscopy of complex atoms," Rev. Mod. Phys. 68, 1015-1123 (1996) and references therein.
[CrossRef]

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. I. General features," Phys. Rev. A 48, 4429-4440 (1993).
[CrossRef] [PubMed]

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. II. Classifications," Phys. Rev. A 48, 4441-4449 (1993).
[CrossRef] [PubMed]

Gudeman, C. S.

Hackett, P. A.

A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
[CrossRef] [PubMed]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
[CrossRef]

Hasegawa, S.

L. Matsuoka and S. Hasegawa, "Two-color resonance ionization spectroscopy of Rydberg states of hafnium atoms," Phys. Rev. A 74, 062515 (2006).
[CrossRef]

Humphries, M. R.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
[CrossRef]

James, A. M.

B. Simard, P. Kowalczyk, and A. M. James, "First ionization potential of tantalum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 50, 846-849 (1994).
[CrossRef] [PubMed]

Knight, R. D.

J. E. Sohl, Y. Zhu, and R. D. Knight, "Two-color laser photoionization spectroscopy of Ti I: multichannel quantum defect theory analysis and a new ionization potential," J. Opt. Soc. Am. A 7, 9-14 (1990).
[CrossRef]

Kowalczyk, P.

B. Simard, P. Kowalczyk, and A. M. James, "First ionization potential of tantalum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 50, 846-849 (1994).
[CrossRef] [PubMed]

Ladenburg, R.

R. Ladenburg and S. Levy, "Untersuchungen über die anomale dispersion angeregter gase. VIII. Teil, die übergangswahrscheinlichkeiten der rot=gelben neonlinien (s-p) und die lebensdauer der p=zustände," Z. Phys. 88, 461-468 (1934).
[CrossRef]

Levy, S.

R. Ladenburg and S. Levy, "Untersuchungen über die anomale dispersion angeregter gase. VIII. Teil, die übergangswahrscheinlichkeiten der rot=gelben neonlinien (s-p) und die lebensdauer der p=zustände," Z. Phys. 88, 461-468 (1934).
[CrossRef]

Luc-Koenig, E.

M. Aymar, C. H. Greene, and E. Luc-Koenig, "Multichannel Rydberg spectroscopy of complex atoms," Rev. Mod. Phys. 68, 1015-1123 (1996) and references therein.
[CrossRef]

Malone, B. S.

B. S. Malone and W. H. Corcoran, "Transition probability measurements in the blue-near-u.v. spectrum of argon I," J. Quant. Spectrosc. Radiat. Transf. 6, 443-449 (1966).
[CrossRef]

Marijnissen, A.

A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
[CrossRef] [PubMed]

Matsuoka, L.

L. Matsuoka and S. Hasegawa, "Two-color resonance ionization spectroscopy of Rydberg states of hafnium atoms," Phys. Rev. A 74, 062515 (2006).
[CrossRef]

Miecznik, G.

Mitchell, S. A.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
[CrossRef]

Page, R. H.

Rayner, D. M.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
[CrossRef]

Robicheaux, F.

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. I. General features," Phys. Rev. A 48, 4429-4440 (1993).
[CrossRef] [PubMed]

D. J. Armstrong and F. Robicheaux, "Photoionization of the scandium atom. III. Experimental and theoretical spectra from an excited state," Phys. Rev. A 48, 4450-4460 (1993).
[CrossRef] [PubMed]

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. II. Classifications," Phys. Rev. A 48, 4441-4449 (1993).
[CrossRef] [PubMed]

Simard, B.

A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
[CrossRef] [PubMed]

B. Simard, P. Kowalczyk, and A. M. James, "First ionization potential of tantalum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 50, 846-849 (1994).
[CrossRef] [PubMed]

Sohl, J. E.

J. E. Sohl, Y. Zhu, and R. D. Knight, "Two-color laser photoionization spectroscopy of Ti I: multichannel quantum defect theory analysis and a new ionization potential," J. Opt. Soc. Am. A 7, 9-14 (1990).
[CrossRef]

Sugar, J.

J. Sugar and C. Corliss, "Atomic energy levels of the iron period elements: potassium through nickel," J. Phys. Chem. Ref. Data 14(Suppl. 2), 1-664 (1985).

ter Meulen, J. J.

A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
[CrossRef] [PubMed]

Wiese, W. L.

J. R. Fuhr and W. L. Wiese, "Atomic transition probabilities," in CRC Handbook of Chemistry and Physics, 79th ed., D.R.Lide, ed. (CRC Press, 1998).

Zhu, Y.

J. E. Sohl, Y. Zhu, and R. D. Knight, "Two-color laser photoionization spectroscopy of Ti I: multichannel quantum defect theory analysis and a new ionization potential," J. Opt. Soc. Am. A 7, 9-14 (1990).
[CrossRef]

J. Chem. Phys. (1)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, "The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series," J. Chem. Phys. 85, 3194-3197 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. E. Sohl, Y. Zhu, and R. D. Knight, "Two-color laser photoionization spectroscopy of Ti I: multichannel quantum defect theory analysis and a new ionization potential," J. Opt. Soc. Am. A 7, 9-14 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

J. Sugar and C. Corliss, "Atomic energy levels of the iron period elements: potassium through nickel," J. Phys. Chem. Ref. Data 14(Suppl. 2), 1-664 (1985).

J. Quant. Spectrosc. Radiat. Transf. (1)

B. S. Malone and W. H. Corcoran, "Transition probability measurements in the blue-near-u.v. spectrum of argon I," J. Quant. Spectrosc. Radiat. Transf. 6, 443-449 (1966).
[CrossRef]

Phys. Rev. A (6)

B. Simard, P. Kowalczyk, and A. M. James, "First ionization potential of tantalum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 50, 846-849 (1994).
[CrossRef] [PubMed]

A. Marijnissen, J. J. ter Meulen, P. A. Hackett, and B. Simard, "First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy," Phys. Rev. A 52, 2606-2610 (1995).
[CrossRef] [PubMed]

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. I. General features," Phys. Rev. A 48, 4429-4440 (1993).
[CrossRef] [PubMed]

F. Robicheaux and C. H. Greene, "Photoionization of the scandium atom. II. Classifications," Phys. Rev. A 48, 4441-4449 (1993).
[CrossRef] [PubMed]

D. J. Armstrong and F. Robicheaux, "Photoionization of the scandium atom. III. Experimental and theoretical spectra from an excited state," Phys. Rev. A 48, 4450-4460 (1993).
[CrossRef] [PubMed]

L. Matsuoka and S. Hasegawa, "Two-color resonance ionization spectroscopy of Rydberg states of hafnium atoms," Phys. Rev. A 74, 062515 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

M. Aymar, C. H. Greene, and E. Luc-Koenig, "Multichannel Rydberg spectroscopy of complex atoms," Rev. Mod. Phys. 68, 1015-1123 (1996) and references therein.
[CrossRef]

Z. Phys. (1)

R. Ladenburg and S. Levy, "Untersuchungen über die anomale dispersion angeregter gase. VIII. Teil, die übergangswahrscheinlichkeiten der rot=gelben neonlinien (s-p) und die lebensdauer der p=zustände," Z. Phys. 88, 461-468 (1934).
[CrossRef]

Other (1)

J. R. Fuhr and W. L. Wiese, "Atomic transition probabilities," in CRC Handbook of Chemistry and Physics, 79th ed., D.R.Lide, ed. (CRC Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Level structure of titanium atoms [15] and the excitation schemes in this experiment. Line arrows indicate the transitions induced by the lasers. The block arrow indicates the region scanned by the second laser.

Fig. 2
Fig. 2

Observed spectrum excited from the 3 d 2 ( F 3 ) 4 s 4 p ( P o 1 ) y G 5 3 state. The lower curve is the same spectrum that was obtained with the attenuated second laser. Ionization limits are indicated by line arrows. The three regions in the spectrum that were considered for analysis are indicated.

Fig. 3
Fig. 3

Observed spectrum excited from the 3 d 2 ( F 3 ) 4 s 4 p ( P o 1 ) y G 4 3 state. The two regions considered for analysis are indicated. Two autoionization series are assigned using comb pointers.

Fig. 4
Fig. 4

Observed spectrum excited from the 3 d 2 ( F 3 ) 4 s 4 p ( P o 1 ) y G 3 3 state. The region considered for analysis is indicated. Two autoionization series are assigned using comb pointers.

Fig. 5
Fig. 5

Expanded spectrum of Region 1 in Fig. 2. Two series are assigned and indicated using comb pointers. The ionization limits are indicated using line arrows.

Fig. 6
Fig. 6

Quantum defects of the 3 d 3 ( F 9 2 4 ) n d series in Fig. 5. The energy values and effective quantum numbers of the series are shown in Table 2. The quantum defects are calculated using three ionization potentials for the comparison of the adjustment.

Fig. 7
Fig. 7

Expanded spectrum of Region 2 in Fig. 2. The main series of the 3 d 2 4 s ( F 9 2 4 ) n d and the 3 d 2 4 s ( F 9 2 4 ) n s are indicated using comb pointers. The assignments of the other fine-structure levels are given in Table 3. One unknown large peak is indicated by an arrow.

Fig. 8
Fig. 8

Quantum defects of the observed series in Region 2. The function mod ( μ , 1 ) is used to deal with the quantum defect of the n s series in the same frame. The energy values and the effective quantum numbers of the series are shown in Table 3. The quantum defects are calculated using three ionization potentials for comparison.

Fig. 9
Fig. 9

Expanded spectrum of Region 3 in Fig. 2. The main series of 3 d 2 4 s ( F 7 2 4 ) n d and 3 d 2 4 s ( F 9 2 4 ) n d are indicated using comb pointers. The assignments of the other fine-structure levels and the n s series are given in Table 4. Three unknown large peaks are indicated by arrows.

Fig. 10
Fig. 10

Expanded spectrum of Region 4 in Fig. 3. The main series of 3 d 2 4 s ( F 7 2 4 ) n d and 3 d 2 4 s ( F 7 2 4 ) n s are indicated using comb pointers. The assignment of the other fine-structure levels are given in Table 5. One unknown large peak is indicated by an arrow. The black triangles indicate the energy at which the quantum defect for the fourth ionization limit becomes zero. These triangles are used as the ruler measuring the period of the series converging to the fourth ionization limit.

Fig. 11
Fig. 11

Quantum defects of the observed series in Region 4. The function mod ( μ , 1 ) is used to deal with the n s series in the same frame. The energy values and the effective quantum numbers of the series are shown in Table 5. The quantum defects are calculated using the optimized ionization potential. The periodicity of ν 4 is given by the dashed line to show the periodicity of the perturbation. The position of the secind ionization limit is given by another line.

Fig. 12
Fig. 12

Expanded spectrum of Region 5 in Fig. 3. The main series of 3 d 2 4 s ( F 5 2 4 ) n d and 3 d 2 4 s ( F 7 2 4 ) n d are indicated using comb pointers. The assignments of the other fine-structure levels and the n s series are given in Table 6. Five unknown large peaks are indicated by arrows.

Fig. 13
Fig. 13

Expanded spectrum of Region 6 in Fig. 4. The main series of 3 d 2 4 s ( F 3 2 4 ) n d and 3 d 2 4 s ( F 5 2 4 ) n d are indicated using comb pointers. Some large n s series are indicated using arrows and comb pointers. The assignments of the other fine-structure levels are given in Table 7. Three unknown large peaks are indicated by arrows.

Fig. 14
Fig. 14

Lu–Fano plot of Rydberg states in Fig. 13. This figure is based on Fig. 9 in [10]. The solid curves represent quantum defects in the 3 d 2 4 s ( F 3 2 4 ) ε d 5 2 channel [10]. Diamonds ( ) show the positions of the theoretical energy levels [10]. Stars ( * ) denote the experimental positions in [5]. Boxes ( ) represent the experimental positions in this study.

Tables (7)

Tables Icon

Table 1 Mixing Rates of the Configurations a That Were Used as the Intermediate States for the Experiment b

Tables Icon

Table 2 Energy, Effective Quantum Number, and Assigned Configuration of the Observed Levels in Region 1 (Fig. 5) a

Tables Icon

Table 3 Energy, Effective Quantum Number, and Assigned Configuration of the Observed Levels in Region 2 (Fig. 7) a

Tables Icon

Table 4 Energy, Effective Quantum Number, and Assigned Configuration of the Observed Levels in Region 3 (Fig. 9) a

Tables Icon

Table 5 Energy, Effective Quantum Number, and Assigned Configuration of the Observed Levels in Region 4 (Fig. 10) a

Tables Icon

Table 6 Energy, Effective Quantum Number, and Assigned configuration of the Observed Levels in Region 5 (Fig. 12) a

Tables Icon

Table 7 Energy, Effective Quantum Number, and Assigned Configuration of the Observed Levels in Region 6 (Fig. 13) a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Energy = I i Ry ( Ti ) ν i 2 = I i Ry ( Ti ) ( n i μ i ) 2 ,

Metrics