Abstract

The optimization design of the layer structure for a novel type of a 1.3μm monolithically integrated InP-based optical waveguide isolator is presented. The concept of this component is based on introducing a nonreciprocal loss–gain behavior in a standard semiconductor optical amplifier (SOA) structure by contacting the SOA with a transversely magnetized ferromagnetic metal contact, sufficiently close to the guiding and amplifying core of the SOA. The thus induced nonreciprocal complex transverse Kerr shift on the effective index of the guided TM modes, combined with a proper current injection, allows for forward transparency and backward optical extinction. We introduce two different optimization criteria for finding the optimal SOA layer structure, using two different figure-of-merit functions (FoM) for the device performance. The device performance is also compared for three different compositions of the CoxFe1x (x=0,50,90) ferromagnetic transition metal alloy system. It is found that equiatomic (or quasi-equiatomic) CoFe alloys are the most suitable for this application. Depending on the used FoM, two technologically practical designs are proposed for a truly monolithically integrated optical waveguide isolator. It is also shown that these designs are robust with respect to variations in layer thicknesses and wavelength. Finally, we have derived an analytical expression that gives a better insight in the limit performance of a ferromagnetic metal-clad SOA–isolator in terms of metal parameters.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, "Applications of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22, 240-253 (2005).
    [CrossRef]
  2. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
    [CrossRef]
  3. W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).
    [CrossRef]
  4. M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," in Proceedings of the 11th International Conference on Indium Phosphide and Related Materials (IEEE, 1999), pp. 298-292.
  5. J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices," IEEE Photon. Technol. Lett. 9, 631-633 (1997).
    [CrossRef]
  6. M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
    [CrossRef]
  7. W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
    [CrossRef]
  8. K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
    [CrossRef]
  9. A. K. Zvezdin and V. A. Kotov, "Polarized light and gyrotropic media," in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, 1997), pp. 19-32.
  10. C. Vassallo, "1993-1995 Optical mode solvers," Opt. Quantum Electron. 29, 95-114 (1997).
    [CrossRef]
  11. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
    [CrossRef]
  12. H. Yokoi, T. Mizumoto, and Y. Shoji, "Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding," Appl. Opt. 42, 6605-6612 (2003).
    [CrossRef] [PubMed]
  13. W. Van Parys and M. Vanwolleghem, "Report on I-V characteristics of CoFe contacted device structure ressembling closely the final structure," IST-ISOLASER project Deliverable D11, available at http://pcphotonics2.intec.ugent.be/isolaser/.
  14. A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
    [CrossRef]
  15. R. Atkinson and P. H. Lissberger, "Sign conventions in magneto-optical calculations and measurements," Appl. Opt. 31, 6076-6081 (1992).
    [CrossRef] [PubMed]
  16. J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
    [CrossRef]
  17. B. Jensen, "Calculation of the refractive index of compound semiconductors below the band gap," in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 125-149.
  18. T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
    [CrossRef]
  19. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
    [CrossRef]
  20. H. Shimizu and Y. Nakano, "Fabrication a TE mode InGaAsP active waveguide optical isolator based on the nonreciprocal loss shift," in Magneto-Optical Materials for Photonics and Recording, K.Ando, W.Challener, R.Gambino, and M.Levy, eds., Proc. SPIE 834, 834-839 (2005).
  21. H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys. Part 2 43, L1561-L1563 (2004).
    [CrossRef]
  22. V. Zayets and K. Ando, "Isolation effect in ferromagnetic-metal/semiconductor hybrid optical waveguide," Appl. Phys. Lett. 86, 261105 (2005).
    [CrossRef]
  23. H. Raether, Surface Plasmons—on Smooth and Rough Surfaces and on Gratings, Vol. III of Springer Tracts in Modern Physics (Springer-Verlag, 1988).

2006 (2)

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

2005 (3)

2004 (3)

H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys. Part 2 43, L1561-L1563 (2004).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

2003 (1)

2001 (1)

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

2000 (2)

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

1999 (1)

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

1997 (2)

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices," IEEE Photon. Technol. Lett. 9, 631-633 (1997).
[CrossRef]

C. Vassallo, "1993-1995 Optical mode solvers," Opt. Quantum Electron. 29, 95-114 (1997).
[CrossRef]

1996 (1)

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

1992 (1)

Abeles, J. H.

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices," IEEE Photon. Technol. Lett. 9, 631-633 (1997).
[CrossRef]

Ando, K.

V. Zayets and K. Ando, "Isolation effect in ferromagnetic-metal/semiconductor hybrid optical waveguide," Appl. Phys. Lett. 86, 261105 (2005).
[CrossRef]

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

Atkinson, R.

Baets, R.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

Bahlmann, N.

Bartenlian, B.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

Beauvillain, P.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

Bienstman, P.

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

Blok, H.

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

Channin, D. J.

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices," IEEE Photon. Technol. Lett. 9, 631-633 (1997).
[CrossRef]

Cuisin, C.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

Dagens, B.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

Decobert, J.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

Demeulenaere, B.

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

Dötsch, H.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, "Applications of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22, 240-253 (2005).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Futakuchi, N.

Gauthier-Lafaye, O.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

Gerhardt, R.

Gogol, P.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

Haes, J.

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

Hammer, J. M.

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices," IEEE Photon. Technol. Lett. 9, 631-633 (1997).
[CrossRef]

Hammer, M.

Harmle, J.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

Hertel, P.

Jensen, B.

B. Jensen, "Calculation of the refractive index of compound semiconductors below the band gap," in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 125-149.

Kotov, V. A.

A. K. Zvezdin and V. A. Kotov, "Polarized light and gyrotropic media," in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, 1997), pp. 19-32.

Lagae, L.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

Lagay, N.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

Laruelle, F.

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

Le Gouezigou, O.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

Lelarge, F.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

Lenstra, D.

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

Lesuffleur, A.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Lissberger, P. H.

Make, D.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

Mizumoto, T.

Moeyersoon, B.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

Nakano, Y.

H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys. Part 2 43, L1561-L1563 (2004).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
[CrossRef]

H. Shimizu and Y. Nakano, "Fabrication a TE mode InGaAsP active waveguide optical isolator based on the nonreciprocal loss shift," in Magneto-Optical Materials for Photonics and Recording, K.Ando, W.Challener, R.Gambino, and M.Levy, eds., Proc. SPIE 834, 834-839 (2005).

M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," in Proceedings of the 11th International Conference on Indium Phosphide and Related Materials (IEEE, 1999), pp. 298-292.

Osgood, R. M.

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Pistora, J.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

Popkov, A. F.

Postava, K.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons—on Smooth and Rough Surfaces and on Gratings, Vol. III of Springer Tracts in Modern Physics (Springer-Verlag, 1988).

Shimizu, H.

H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys. Part 2 43, L1561-L1563 (2004).
[CrossRef]

H. Shimizu and Y. Nakano, "Fabrication a TE mode InGaAsP active waveguide optical isolator based on the nonreciprocal loss shift," in Magneto-Optical Materials for Photonics and Recording, K.Ando, W.Challener, R.Gambino, and M.Levy, eds., Proc. SPIE 834, 834-839 (2005).

Shinjo, N.

Shoji, Y.

Takenaka, M.

M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," in Proceedings of the 11th International Conference on Indium Phosphide and Related Materials (IEEE, 1999), pp. 298-292.

Thedrez, B.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

Van Parys, W.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

W. Van Parys and M. Vanwolleghem, "Report on I-V characteristics of CoFe contacted device structure ressembling closely the final structure," IST-ISOLASER project Deliverable D11, available at http://pcphotonics2.intec.ugent.be/isolaser/.

Van Thourhout, D.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

Vanheertum, R.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

Vanwolleghem, M.

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

W. Van Parys and M. Vanwolleghem, "Report on I-V characteristics of CoFe contacted device structure ressembling closely the final structure," IST-ISOLASER project Deliverable D11, available at http://pcphotonics2.intec.ugent.be/isolaser/.

Vassallo, C.

C. Vassallo, "1993-1995 Optical mode solvers," Opt. Quantum Electron. 29, 95-114 (1997).
[CrossRef]

Visnovský, S.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005).
[CrossRef]

Visser, T. D.

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

Wilkens, L.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, "Applications of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22, 240-253 (2005).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Wirix-Speetjens, R.

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

Yokoi, H.

Zaets, W.

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

Zayets, V.

V. Zayets and K. Ando, "Isolation effect in ferromagnetic-metal/semiconductor hybrid optical waveguide," Appl. Phys. Lett. 86, 261105 (2005).
[CrossRef]

Zhuromskyy, O.

Zvezdin, A. K.

A. K. Zvezdin and V. A. Kotov, "Polarized light and gyrotropic media," in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, 1997), pp. 19-32.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

V. Zayets and K. Ando, "Isolation effect in ferromagnetic-metal/semiconductor hybrid optical waveguide," Appl. Phys. Lett. 86, 261105 (2005).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices," IEEE Photon. Technol. Lett. 9, 631-633 (1997).
[CrossRef]

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

J. Cryst. Growth (1)

J. Decobert, N. Lagay, C. Cuisin, B. Dagens, B. Thedrez, and F. Laruelle, "MOVPE growth of AlGaInAs-InP highly tensile-strained MQWs for 1.3 μm low-threshold lasers," J. Cryst. Growth 272, 543-548 (2004).
[CrossRef]

J. Lightwave Technol. (1)

T. D. Visser, B. Demeulenaere, J. Haes, D. Lenstra, R. Baets, and H. Blok, "Confinement and modal gain in dielectric waveguides," J. Lightwave Technol. 14, 885-887 (1996).
[CrossRef]

J. Magn. Magn. Mater. (1)

A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovský, and R. Wirix-Speetjens, "Magneto-optical parameters of Co90Fe10 and Co50Fe50 ferromagnetic thin films for 1.3 μm integrated isolator," J. Magn. Magn. Mater. 305, 284-290 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. Part 2 (1)

H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys. Part 2 43, L1561-L1563 (2004).
[CrossRef]

Opt. Quantum Electron. (2)

P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
[CrossRef]

C. Vassallo, "1993-1995 Optical mode solvers," Opt. Quantum Electron. 29, 95-114 (1997).
[CrossRef]

Other (6)

B. Jensen, "Calculation of the refractive index of compound semiconductors below the band gap," in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 125-149.

M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," in Proceedings of the 11th International Conference on Indium Phosphide and Related Materials (IEEE, 1999), pp. 298-292.

A. K. Zvezdin and V. A. Kotov, "Polarized light and gyrotropic media," in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, 1997), pp. 19-32.

H. Shimizu and Y. Nakano, "Fabrication a TE mode InGaAsP active waveguide optical isolator based on the nonreciprocal loss shift," in Magneto-Optical Materials for Photonics and Recording, K.Ando, W.Challener, R.Gambino, and M.Levy, eds., Proc. SPIE 834, 834-839 (2005).

H. Raether, Surface Plasmons—on Smooth and Rough Surfaces and on Gratings, Vol. III of Springer Tracts in Modern Physics (Springer-Verlag, 1988).

W. Van Parys and M. Vanwolleghem, "Report on I-V characteristics of CoFe contacted device structure ressembling closely the final structure," IST-ISOLASER project Deliverable D11, available at http://pcphotonics2.intec.ugent.be/isolaser/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic and (b) operation principle of the monolithic integrated optical waveguide isolator.

Fig. 2
Fig. 2

Experimentally determined logarithmic gain-current relationship of the tensile-strained 6QW core (at room temperature.)

Fig. 3
Fig. 3

I - FoM scan of the SCH parameter space (at t In P = 260 nm ) for a Co 50 Fe 50 SOA–isolator.

Fig. 4
Fig. 4

Optimum values of the two considered FoMs (a) I, (b) L × I within each considered ( t S C H , l , t S C H , u ) plane (i.e., t In P = C with C = 500 , , 200 nm ). The arrows indicate the absolute minima.

Fig. 5
Fig. 5

Isolator length (cm/dB) (solid curve) and total isolator current ( mA μ m dB ) (dashed curve) corresponding to the design points of Figs. 4a I, 4b L × I .

Fig. 6
Fig. 6

Equi-FoM contours for the Co 50 Fe 50 -clad SOA isolator in the neighborhood of the optimum design point. The outer contour represents an increase of 10% of the absolute minimum value; the spacing of the contours is 1%. Subplots (a) (b), and (c) are for the I - FoM function and for the optimum thickness of, respectively, (a) InP layer, (b) upper SCH layer, and (c) lower guiding layer. The same applies for the subplots (d)–(f) but for the L × I FoM.

Fig. 7
Fig. 7

Variations of the nonreciprocal absorption shift (in 1 cm ) in terms of the measurement accuracy of the dichroic part of the gyrotropy parameter of Co 50 Fe 50 and for different values of R ( g ) (see Table 1). The black dot indicates the optimum L × I design point obtained with the values of Table 1.

Tables (3)

Tables Icon

Table 1 Measured Optical and MO Indices of the Three Studied CoFe Alloy Compositions at 1300 nm a

Tables Icon

Table 2 Slab Layer Structure to Be Optimized a

Tables Icon

Table 3 Results of the Optimization Calculations of the SOA–Isolator Layer Structure

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ϵ ̱ MO = ϵ 0 [ ϵ r + j g cos ( ϑ z ) j g cos ( ϑ y ) j g cos ( ϑ z ) ϵ r + j g cos ( ϑ x ) + j g cos ( ϑ y ) j g cos ( ϑ x ) ϵ r ] .
ϵ r = ϵ r j ϵ r = ( n j κ ) 2 ,
g = g j g ,
G mat = 66 Γ TM , 6 QW ln ( 6 N w J tot 0.35 ) = 471 ln ( 6 N w J tot 0.35 ) ,
Δ α MO [ in 1 cm ] = 4 I [ Δ β MO ] = 8 π Z vac λ R [ g E x ( 0 ) E z ( 0 ) d x E x ( 0 ) H y ( 0 ) d x ] ,
IS [ in dB cm ] = 10 ln ( P out bw P out fw ) L = 10 ln ( exp ( Δ α MO L ) ) L = 80 π ln 10 Z vac λ R [ g E x ( 0 ) E z ( 0 ) d x E x ( 0 ) H y ( 0 ) d x ] 0.3 λ R [ g E x ( 0 ) E z ( 0 ) d x E x ( 0 ) H y ( 0 ) d x ] ,
G mod TM ( J ) = i Γ i TM G mat , i QW ( J ) ,
Γ i TM = R [ QW i n QW i ( ( E x ( 0 ) ) 2 ( E z ( 0 ) ) 2 ) d x Z vac E x ( 0 ) H y ( 0 ) d x ] ,
G mat QW ( J tr , fw ) = α ( 0 ) Δ α MO 2 Γ TM ,
FoM = L A dB m × I A dB n ( with m , n positive integers ) .
L A dB = A Δ α , I A dB = A Δ α J tr , fw FoM = A m + n J tr , fw n Δ α m + n .
Δ α = R ( g A ) ,
A = 4 k 0 Z vac metal E x ( 0 ) E z ( 0 ) d x E x ( 0 ) H y ( 0 ) d x ,
( A ) = { ( g ) π ( g ) } .
E z ( 0 ) = j k 0 n eff d E x ( 0 ) d x .
metal E x ( 0 ) E z ( 0 ) d x = j 2 k 0 n eff metal d ( E x ( 0 ) ) 2 d x d x = j 2 k 0 n eff ( E x ( 0 ) ) 2 ( x m + ) ,
A = ( j Z vac n eff ( E x ( 0 ) ) 2 ( x m + ) ) π 2 + 2 E x ( 0 ) ( x m + ) ,
Δ α = g E x ( 0 ) ( x m + ) 2 Z vac n eff sin ( g + 2 E x ( 0 ) ( x m + ) ) ,

Metrics