Abstract

Diffraction-controlled wavelength dependence of the effective mode area Seff(λ) in optical fibers can serve as a mechanism limiting the soliton self-frequency shift induced by the Raman effect in materials with retarded nonlinearity. By numerically solving the generalized nonlinear Schrödinger equation modified to include the Seff(λ) dependence, we show that, as the central wavelength of the soliton increases, the waveguide mode tends to become less compact, slowing down the soliton self-frequency shift. As a result, for optical fibers with a steep Seff(λ) profile, wavelength uncertainties and the timing jitter of the frequency-shifted soliton induced by input power fluctuations can be substantially reduced compared with fibers with a weak Seff(λ) dependence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription