Abstract

Diffraction-controlled wavelength dependence of the effective mode area Seff(λ) in optical fibers can serve as a mechanism limiting the soliton self-frequency shift induced by the Raman effect in materials with retarded nonlinearity. By numerically solving the generalized nonlinear Schrödinger equation modified to include the Seff(λ) dependence, we show that, as the central wavelength of the soliton increases, the waveguide mode tends to become less compact, slowing down the soliton self-frequency shift. As a result, for optical fibers with a steep Seff(λ) profile, wavelength uncertainties and the timing jitter of the frequency-shifted soliton induced by input power fluctuations can be substantially reduced compared with fibers with a weak Seff(λ) dependence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  2. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  4. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  5. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  6. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001).
    [CrossRef]
  7. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
    [CrossRef]
  8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  9. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
    [CrossRef]
  10. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
    [CrossRef]
  11. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
    [CrossRef] [PubMed]
  12. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
    [CrossRef]
  13. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990).
    [CrossRef] [PubMed]
  14. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
    [CrossRef]
  15. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
    [CrossRef]
  16. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  17. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  18. A.M.Zheltikov, ed., "Supercontinuum generation," Appl. Phys. B 77, 2-3 (2003).
  19. A. M. Zheltikov, "Nonlinear optics of microstructure fibres," Phys. Usp. 47, 69-98 (2004).
    [CrossRef]
  20. See http://www.crystal-fiber.com.
  21. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000).
    [CrossRef]

2005 (4)

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

2004 (2)

A. M. Zheltikov, "Nonlinear optics of microstructure fibres," Phys. Usp. 47, 69-98 (2004).
[CrossRef]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

2003 (3)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (3)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

2000 (1)

1990 (1)

1989 (1)

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

1986 (1)

1985 (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Akimov, D. A.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

Alfimov, M. V.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

Baltuska, A.

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

Bennet, P. J.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Broderick, N. G. R.

Chandalia, J. K.

Chernikov, S. V.

Coen, S.

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Dudley, J. M.

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

Fedotov, A. B.

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

Fomichev, A. A.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Fuji, T.

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Holzwarth, R.

Ishii, N.

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Ivanov, A. A.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

Karasawa, N.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Karasik, A. Y.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Kibler, B.

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Knight, J. C.

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

Knox, W. H.

Köhler, S.

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

Konorov, S. O.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

Kosinski, S. G.

Krausz, F.

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

Liu, X.

Mamyshev, P. V.

P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990).
[CrossRef] [PubMed]

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Mann, T. P. M.

Metzger, T.

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Monro, T. M.

Morita, R.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Nakagawa, N.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Nakamura, S.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Ortigosa-Blanch, A.

Prokhorov, A. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Richardson, D. J.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

Serebryannikov, E. E.

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

Serkin, V. N.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Shibata, M.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Shigekawa, H.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Stel'makh, M. F.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Tarasevitch, A. P.

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Teisset, C. Y.

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

von der Linde, D.

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

Wadsworth, W. J.

Windeler, R. S.

Wood, D.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Xu, C.

Yamashita, M.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

Zheltikov, A. M.

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuska, A. M. Zheltikov, and F. Krausz, "Soliton-based pump-seed synchronization for few-cycle OPCPA," Opt. Express 13, 6550-6557 (2005).
[CrossRef] [PubMed]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

A. M. Zheltikov, "Nonlinear optics of microstructure fibres," Phys. Usp. 47, 69-98 (2004).
[CrossRef]

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

Appl. Phys. B (3)

A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, "Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers," Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber," IEEE J. Quantum Electron. 37, 398-404 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel'makh, and A. A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297 (1985).

Nature (2)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (2)

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70, 057601 (2004).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers," Phys. Rev. E 72, 056603 (2005).
[CrossRef]

Phys. Usp. (1)

A. M. Zheltikov, "Nonlinear optics of microstructure fibres," Phys. Usp. 47, 69-98 (2004).
[CrossRef]

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

A.M.Zheltikov, ed., "Supercontinuum generation," Appl. Phys. B 77, 2-3 (2003).

See http://www.crystal-fiber.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavelength dependence of the effective mode areas for (curve 1) a PCF with a core diameter of 1.8 μ m , an air-hole size d 1.5 μ m , a pitch of the cladding structure Λ 1.65 μ m , and the cross-section structure shown in inset 1 and (curve 2) a PCF with d 0.7 μ m , Λ 1.2 μ m , and the cross-section structure shown in inset 2. (curve 3) The group-velocity dispersion (GVD) as a function of the wavelength for the PCF shown in inset 1. The wavelength dependence of the fiber loss included in numerical simulations is shown in inset 3.

Fig. 2
Fig. 2

(a), (b) Field envelope and (c), (d) the spectral intensity of a laser pulse with an initial central wavelength of 800 nm and an initial pulse width of 30 fs propagating through a PCF with a frequency-independent mode area (curves 1) and the S eff ( λ ) profile shown in Fig. 1 (curves 2). The input pulse energy is (a), (c) 0.25 nJ and (b), (d) 0.50 nJ . The propagation coordinate z increases from top to bottom, taking the values of 5, 10, 15, and 20 cm , as shown in the panels.

Fig. 3
Fig. 3

Soliton wavelength shift Δ λ as a function of the pulse-propagation distance z in the PCF with a frequency-independent mode area (solid curves 1, 3, 5, 7) and the S eff ( λ ) profile shown in Fig. 1 (dashed curves 2, 4, 6, 8) for different energies ϵ of the input 30 fs laser pulse: ϵ = 0.1 nJ (1, 2), 0.2 nJ (3, 4), 0.4 nJ (5, 6), 0.6 nJ (7, 8).

Fig. 4
Fig. 4

(a) Soliton wavelength shift Δ λ and (b) the delay time of the frequency-shifted soliton Δ τ (b) calculated as functions of the input pulse energy for 10 cm (curves 1, 2) and 20 cm (curves 3, 4) pieces of PCF with frequency-independent effective mode area (curves 1, 3) and the S eff ( λ ) profile shown in Fig. 1 (curves 2, 4).

Fig. 5
Fig. 5

Parameters (a) D λ = d ( Δ λ ) ( d ϵ ϵ ) and (b) D τ = d ( Δ τ ) ( d ϵ ϵ ) calculated as functions of the input laser energy for 10 cm (curves 1, 2) and 20 cm (curves 3, 4) pieces of PCF with frequency-independent effective mode area (curves 1, 3) and the S eff ( λ ) profile shown in Fig. 1 (curves 2, 4).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ξ = α ( 0 ) 2 A i α ( 1 ) 2 A τ + i k = 2 6 ( i ) k k ! ( β ( k ) + i α ( k ) 2 ) k A τ k + P nl ( ξ , τ ) ,
P nl ( ξ , τ ) = i F ̂ 1 [ n 2 ω c S eff ( ω ) p ̃ nl ( ξ , ω 0 ω ) ] ,
S eff ( ω ) = [ F ( x , y ) 2 d x d y ] 2 F ( x , y ) 4 d x d y
p ̃ nl ( ξ , ω ω 0 ) = F ̂ [ A ( ξ , τ ) R ( t ) A ( ξ , τ t ) 2 d t ] ,
R ( t ) = ( 1 f R ) δ ( t ) + f R ϴ ( t ) τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,

Metrics