Abstract

Laser photoinduced properties in iron-doped LiNbO3 crystals were investigated by means of Raman spectroscopy. The results were compared with data recorded in undoped crystals. The appearance of several lines unexpected by the Raman selection rules were interpreted by means of a nonlinear polarization caused by the photovoltaic effect. This polarization gives rise to additional components in the Raman tensor. Our report underlines the interest of Raman spectroscopy for probing nonlinear optical polarization.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Räuber, "Chemistry and physics of lithium niobate," in Current Topics in Material Sciences, E.Kaldis, ed. (North-Holland, 1978), pp. 481-601.
  2. F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
    [CrossRef]
  3. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
    [CrossRef]
  4. T. Volk and M. Wöhlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectr. Rev. 1, 195-262 (1998).
  5. E. Krätzig and O. F. Schirmer, "Photorefractive centers in electro-optic crystals," in Photorefractive Materials and Their Applications, I. P.Günter andJ.P.Huignard, eds. (Springer-Verlag, 1988), pp. 131-166.
  6. S. S. Orlov, A. Liu, A. Akella, and L. Hesselink, in Advances in Photorefractive Materials, Effects, and Devices, Volume 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), 500-507.
  7. D. W. Wilson, E. N. Glytsis, N. F. Hartman, and T. K. Gaylord, "Beam diameter threshold for polarization conversion photoinduced by spatially oscillating bulk photovoltaic currents inLiNbO3:Fe," J. Opt. Soc. Am. B 9, 1714-1725 (1992).
    [CrossRef]
  8. P. G. Kazansky, "Photoinduced conversion of radiation polarization in integrated optics components based on LiNbO3," IEEE J. Quantum Electron. 25, 736-741 (1989).
    [CrossRef]
  9. J. F. Lam and H. W. Yen, "Dynamics of optical TE to TM mode conversion in LiNbO3 channel waveguides," Appl. Phys. Lett. 45, 1172-1174 (1984).
    [CrossRef]
  10. R. F. Schaufele and M. J. Weber, "Raman scattering by lithium niobate," Phys. Rev. 152, 705-708 (1966).
    [CrossRef]
  11. I. P. Kaminow and W. D. Johnston, "Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3," Phys. Rev. 160, 519-522 (1967).
    [CrossRef]
  12. R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).
  13. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
    [CrossRef]
  14. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
    [CrossRef]
  15. E. Krätzig and R. Orlowski, "Reduction of optical damage effects in LiNbO3 and LiTaO3," Opt. Quantum Electron. 12, 495-499 (1980).
    [CrossRef]
  16. V. I. Belinicher and B. I. Sturman, "The photogalvanic effect in media lacking a center of symmetry," Sov. Phys. Usp. 23, 199-223 (1980).
    [CrossRef]
  17. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, 1985).

1998 (2)

T. Volk and M. Wöhlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectr. Rev. 1, 195-262 (1998).

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

1997 (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
[CrossRef]

1993 (1)

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

1992 (1)

1989 (1)

P. G. Kazansky, "Photoinduced conversion of radiation polarization in integrated optics components based on LiNbO3," IEEE J. Quantum Electron. 25, 736-741 (1989).
[CrossRef]

1984 (1)

J. F. Lam and H. W. Yen, "Dynamics of optical TE to TM mode conversion in LiNbO3 channel waveguides," Appl. Phys. Lett. 45, 1172-1174 (1984).
[CrossRef]

1980 (2)

E. Krätzig and R. Orlowski, "Reduction of optical damage effects in LiNbO3 and LiTaO3," Opt. Quantum Electron. 12, 495-499 (1980).
[CrossRef]

V. I. Belinicher and B. I. Sturman, "The photogalvanic effect in media lacking a center of symmetry," Sov. Phys. Usp. 23, 199-223 (1980).
[CrossRef]

1972 (1)

R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).

1967 (1)

I. P. Kaminow and W. D. Johnston, "Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3," Phys. Rev. 160, 519-522 (1967).
[CrossRef]

1966 (2)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

R. F. Schaufele and M. J. Weber, "Raman scattering by lithium niobate," Phys. Rev. 152, 705-708 (1966).
[CrossRef]

Abdi, F.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Aillerie, M.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Akella, A.

S. S. Orlov, A. Liu, A. Akella, and L. Hesselink, in Advances in Photorefractive Materials, Effects, and Devices, Volume 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), 500-507.

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

Belinicher, V. I.

V. I. Belinicher and B. I. Sturman, "The photogalvanic effect in media lacking a center of symmetry," Sov. Phys. Usp. 23, 199-223 (1980).
[CrossRef]

Betzler, K.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

Borstel, G.

R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).

Bourson, P.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

Claus, R.

R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

Fontana, M. D.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Hartman, N. F.

Hesselink, L.

S. S. Orlov, A. Liu, A. Akella, and L. Hesselink, in Advances in Photorefractive Materials, Effects, and Devices, Volume 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), 500-507.

Johnston, W. D.

I. P. Kaminow and W. D. Johnston, "Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3," Phys. Rev. 160, 519-522 (1967).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow and W. D. Johnston, "Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3," Phys. Rev. 160, 519-522 (1967).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, "Photoinduced conversion of radiation polarization in integrated optics components based on LiNbO3," IEEE J. Quantum Electron. 25, 736-741 (1989).
[CrossRef]

Klauer, S.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

Krätzig, E.

E. Krätzig and R. Orlowski, "Reduction of optical damage effects in LiNbO3 and LiTaO3," Opt. Quantum Electron. 12, 495-499 (1980).
[CrossRef]

E. Krätzig and O. F. Schirmer, "Photorefractive centers in electro-optic crystals," in Photorefractive Materials and Their Applications, I. P.Günter andJ.P.Huignard, eds. (Springer-Verlag, 1988), pp. 131-166.

Lam, J. F.

J. F. Lam and H. W. Yen, "Dynamics of optical TE to TM mode conversion in LiNbO3 channel waveguides," Appl. Phys. Lett. 45, 1172-1174 (1984).
[CrossRef]

Liu, A.

S. S. Orlov, A. Liu, A. Akella, and L. Hesselink, in Advances in Photorefractive Materials, Effects, and Devices, Volume 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), 500-507.

Malovichko, G.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, 1985).

Orlov, S. S.

S. S. Orlov, A. Liu, A. Akella, and L. Hesselink, in Advances in Photorefractive Materials, Effects, and Devices, Volume 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), 500-507.

Orlowski, R.

E. Krätzig and R. Orlowski, "Reduction of optical damage effects in LiNbO3 and LiTaO3," Opt. Quantum Electron. 12, 495-499 (1980).
[CrossRef]

Polgar, K.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Räuber, A.

A. Räuber, "Chemistry and physics of lithium niobate," in Current Topics in Material Sciences, E.Kaldis, ed. (North-Holland, 1978), pp. 481-601.

Ridah, A.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
[CrossRef]

Schaufele, R. F.

R. F. Schaufele and M. J. Weber, "Raman scattering by lithium niobate," Phys. Rev. 152, 705-708 (1966).
[CrossRef]

Schirmer, O. F.

E. Krätzig and O. F. Schirmer, "Photorefractive centers in electro-optic crystals," in Photorefractive Materials and Their Applications, I. P.Günter andJ.P.Huignard, eds. (Springer-Verlag, 1988), pp. 131-166.

Schlarb, U.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

Steffan, L.

R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).

Sturman, B. I.

V. I. Belinicher and B. I. Sturman, "The photogalvanic effect in media lacking a center of symmetry," Sov. Phys. Usp. 23, 199-223 (1980).
[CrossRef]

Volk, T.

T. Volk and M. Wöhlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectr. Rev. 1, 195-262 (1998).

Weber, M. J.

R. F. Schaufele and M. J. Weber, "Raman scattering by lithium niobate," Phys. Rev. 152, 705-708 (1966).
[CrossRef]

Wesselmann, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

Wiesendanger, E.

R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).

Wilson, D. W.

Wöhlecke, M.

T. Volk and M. Wöhlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectr. Rev. 1, 195-262 (1998).

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

Yen, H. W.

J. F. Lam and H. W. Yen, "Dynamics of optical TE to TM mode conversion in LiNbO3 channel waveguides," Appl. Phys. Lett. 45, 1172-1174 (1984).
[CrossRef]

Appl. Phys. A (1)

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, "Determination of the Li-Nb ratio in lithium niobate by means of birefringence and Raman measurements," Appl. Phys. A 56, 311-316 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

J. F. Lam and H. W. Yen, "Dynamics of optical TE to TM mode conversion in LiNbO3 channel waveguides," Appl. Phys. Lett. 45, 1172-1174 (1984).
[CrossRef]

Ferroelectr. Rev. (1)

T. Volk and M. Wöhlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectr. Rev. 1, 195-262 (1998).

IEEE J. Quantum Electron. (2)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE J. Quantum Electron. 2, 109-124 (1966).
[CrossRef]

P. G. Kazansky, "Photoinduced conversion of radiation polarization in integrated optics components based on LiNbO3," IEEE J. Quantum Electron. 25, 736-741 (1989).
[CrossRef]

J. Appl. Phys. (1)

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, "Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition," J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3," J. Phys.: Condens. Matter 9, 9687-9693 (1997).
[CrossRef]

Opt. Quantum Electron. (1)

E. Krätzig and R. Orlowski, "Reduction of optical damage effects in LiNbO3 and LiTaO3," Opt. Quantum Electron. 12, 495-499 (1980).
[CrossRef]

Phys. Rev. (2)

R. F. Schaufele and M. J. Weber, "Raman scattering by lithium niobate," Phys. Rev. 152, 705-708 (1966).
[CrossRef]

I. P. Kaminow and W. D. Johnston, "Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3," Phys. Rev. 160, 519-522 (1967).
[CrossRef]

Sov. Phys. Usp. (1)

V. I. Belinicher and B. I. Sturman, "The photogalvanic effect in media lacking a center of symmetry," Sov. Phys. Usp. 23, 199-223 (1980).
[CrossRef]

Z. Naturforsch. Teil A (1)

R. Claus, G. Borstel, E. Wiesendanger, and L. Steffan, "Directional dispersion and assignment of optical phonons in lithium niobate," Z. Naturforsch. Teil A 27, 1187-1192 (1972).

Other (4)

A. Räuber, "Chemistry and physics of lithium niobate," in Current Topics in Material Sciences, E.Kaldis, ed. (North-Holland, 1978), pp. 481-601.

E. Krätzig and O. F. Schirmer, "Photorefractive centers in electro-optic crystals," in Photorefractive Materials and Their Applications, I. P.Günter andJ.P.Huignard, eds. (Springer-Verlag, 1988), pp. 131-166.

S. S. Orlov, A. Liu, A. Akella, and L. Hesselink, in Advances in Photorefractive Materials, Effects, and Devices, Volume 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), 500-507.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Raman spectra in an undoped congruent LN crystal. Spectra are recorded in the scattering plane normal to the Z axis with a power density of 4 kW cm 2 : (a) X(ZZ)Y, (b) X(ZX)Y, (c) X(YZ)Y, and (d) X(YX)Y.

Fig. 2
Fig. 2

Raman spectra in an 0.05 wt . % Fe-doped congruent LN crystal. Spectra are recorded in the scattering plane normal to the Z axis with a power density of 4 kW cm 2 : (a) X(ZZ)Y, (b) X(ZX)Y, (c) X(YZ)Y, and (d) X(YX)Y. The forbidden lines arising from A 1 modes are indicated by arrows in (c).

Fig. 3
Fig. 3

Absorption spectra carried out on undoped and Fe-doped crystals.

Fig. 4
Fig. 4

Raman spectra recorded in configurations (a) X(ZZ)Y and (b) X(YZ)Y on a Fe-doped LN crystal for different values of laser power density.

Fig. 5
Fig. 5

Intensity of the four forbidden lines A 1 * ( TO ) are plotted relative to the intensity of the E ( TO 1 ) line versus the input power density, in the X(YZ)Y configuration.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A 1 ( Z ) = ( a 0 0 0 a 0 0 0 b ) , E ( X ) = ( 0 c d c 0 0 d 0 0 ) ,
E ( Y ) = ( c 0 0 0 c d 0 d 0 ) .
J j = k , l ( β j k l S + i β j k l A ) E k E l * ,
E j sc = 1 σ j k , l β j k l S E k E l * ,
P j NL ( ω ) = 2 ε 0 χ j k l ( 2 ) ( ω , ω , 0 ) E k ( ω ) E l ( 0 ) ,
P j NL ( ω ) = ε 0 ε j j ( ω ) ε k k ( ω ) r j k l ( ω , ω , 0 ) E k ( ω ) E l ( 0 ) ,
P j NL ( ω ) = ε 0 n j 2 n k 2 r j k l ( ω , ω , 0 ) E k ( ω ) E l ( 0 ) .
E x sc = E y sc = 0 , E z sc = β 33 S σ 3 E z 2 .
P x NL = P y NL = 0 , P z N L ( ω ) = ε 0 n 3 4 r 33 E z sc E z ( ω ) .
P z ( ω ) = ε 0 χ 3 ( ω ) E z ( ω )
E x sc = 0 , E y sc = β 22 S σ 2 E y 2 , E z sc = β 32 S σ 3 E y 2 ,
P x NL = 0 , P y NL ( ω ) = ε 0 n 2 4 ( r 22 E y sc + r 13 E z sc ) E y ( ω ) P z NL ( ω ) = ε 0 n 2 2 n 3 2 r 42 E y sc E y ( ω ) . , ,

Metrics