Abstract

Optical reflection properties of strongly absorbing dye-aggregate films are discussed with respect to spectroscopic experiments and numerical calculations based on classical wave optics. The dye-aggregate films exhibit enhanced reflection in the wavelengths of the absorption bands and exhibit reflection spectra analogous in profile to the absorption spectra. Although film thickness is much smaller than the wavelength of light, the simple simulations based on a dielectric model reproduced well the essential features of the reflection spectra. The macroscopic analysis, which involved using a complex refractive index, indicates that the enhanced reflection can be expressed by increasing the extinction coefficient with respect to absorption. The spectrally distinct behaviors of reflection at low absorption on wavelengths on either side of the absorption bands are attributed to the changing refractive index with an anomalous dispersion due to the absorption bands.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kido, H. Shionoya, and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett. 67, 2281-2283 (1995).
    [CrossRef]
  2. A. Akella, S. L. Sochava, and L. Hesselink, "Synthesis and characterization of photochromic organic films for holographic recording," Opt. Lett. 22, 919-921 (1997).
    [CrossRef] [PubMed]
  3. P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
    [CrossRef]
  4. H. Grüniger, D. Möbius, and H. Meyer, "Enhanced light reflection by dye monolayers at the air-water interface," J. Chem. Phys. 79, 3701-3710 (1983).
    [CrossRef]
  5. M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
    [CrossRef]
  6. H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
    [CrossRef]
  7. M. T. Martin and D. Möbius, "Enhanced binding of porphyrin by a laterally organized monolayer," Thin Solid Films 284-285, 663-666 (1996).
    [CrossRef]
  8. K. Shinbo, F. Kaneko, and S. Kobayashi, "Adsorption of cyanine dyes and optical properties of phosphatidic acid Langmuir monolayers and Langmuir-Blodgett films," Thin Solid Films 243, 630-633 (1994).
    [CrossRef]
  9. S. G. Stanton, R. Pecora, and B. S. Hudson, "Resonance enhanced dynamic Rayleigh scattering," J. Chem. Phys. 75, 5615-5626 (1981).
    [CrossRef]
  10. J. Anglister and I. Z. Steinberg, "Resonance Rayleigh scattering of cyanine dyes in solution," J. Chem. Phys. 78, 5358-5368 (1983).
    [CrossRef]
  11. R. F. Pasternack and P. J. Collings, "Resonance light scattering: a new technique for studying chromophore aggregation," Science 269, 935-939 (1995).
    [CrossRef] [PubMed]
  12. T. Wakamatsu and S. Odauchi, "Thermal-changeable complex-refractive-index spectra of merocyanine aggregate films," Appl. Opt. 42, 6929-6933 (2003).
    [CrossRef] [PubMed]
  13. V. Czikkely, H. D. Föresterling, and H. Kuhn, "Light absorption and structure of aggregates of dye molecules," Chem. Phys. Lett. 6, 11-14 (1970).
    [CrossRef]
  14. Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
    [CrossRef]
  15. T. Wakamatsu, K. Watanabe, and K. Saito, "Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion," Appl. Opt. 44, 906-911 (2005).
    [CrossRef] [PubMed]
  16. K. Saito, "H-aggregate formation in squarylium Langmuir-Blodgett films," J. Phys. Chem. B 105, 4235-4238 (2001).
    [CrossRef]
  17. Laser and Optics Guide 2 (Melles Griot Company, Japan, 1990).
  18. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

2005 (1)

2003 (2)

T. Wakamatsu and S. Odauchi, "Thermal-changeable complex-refractive-index spectra of merocyanine aggregate films," Appl. Opt. 42, 6929-6933 (2003).
[CrossRef] [PubMed]

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

2001 (1)

K. Saito, "H-aggregate formation in squarylium Langmuir-Blodgett films," J. Phys. Chem. B 105, 4235-4238 (2001).
[CrossRef]

1998 (1)

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

1997 (1)

1996 (2)

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

M. T. Martin and D. Möbius, "Enhanced binding of porphyrin by a laterally organized monolayer," Thin Solid Films 284-285, 663-666 (1996).
[CrossRef]

1995 (2)

J. Kido, H. Shionoya, and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett. 67, 2281-2283 (1995).
[CrossRef]

R. F. Pasternack and P. J. Collings, "Resonance light scattering: a new technique for studying chromophore aggregation," Science 269, 935-939 (1995).
[CrossRef] [PubMed]

1994 (1)

K. Shinbo, F. Kaneko, and S. Kobayashi, "Adsorption of cyanine dyes and optical properties of phosphatidic acid Langmuir monolayers and Langmuir-Blodgett films," Thin Solid Films 243, 630-633 (1994).
[CrossRef]

1986 (1)

M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
[CrossRef]

1983 (2)

J. Anglister and I. Z. Steinberg, "Resonance Rayleigh scattering of cyanine dyes in solution," J. Chem. Phys. 78, 5358-5368 (1983).
[CrossRef]

H. Grüniger, D. Möbius, and H. Meyer, "Enhanced light reflection by dye monolayers at the air-water interface," J. Chem. Phys. 79, 3701-3710 (1983).
[CrossRef]

1981 (1)

S. G. Stanton, R. Pecora, and B. S. Hudson, "Resonance enhanced dynamic Rayleigh scattering," J. Chem. Phys. 75, 5615-5626 (1981).
[CrossRef]

1970 (1)

V. Czikkely, H. D. Föresterling, and H. Kuhn, "Light absorption and structure of aggregates of dye molecules," Chem. Phys. Lett. 6, 11-14 (1970).
[CrossRef]

Akella, A.

Anglister, J.

J. Anglister and I. Z. Steinberg, "Resonance Rayleigh scattering of cyanine dyes in solution," J. Chem. Phys. 78, 5358-5368 (1983).
[CrossRef]

Bignozzi, C. A.

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Collings, P. J.

R. F. Pasternack and P. J. Collings, "Resonance light scattering: a new technique for studying chromophore aggregation," Science 269, 935-939 (1995).
[CrossRef] [PubMed]

Czikkely, V.

V. Czikkely, H. D. Föresterling, and H. Kuhn, "Light absorption and structure of aggregates of dye molecules," Chem. Phys. Lett. 6, 11-14 (1970).
[CrossRef]

Föresterling, H. D.

V. Czikkely, H. D. Föresterling, and H. Kuhn, "Light absorption and structure of aggregates of dye molecules," Chem. Phys. Lett. 6, 11-14 (1970).
[CrossRef]

Forrest, S. R.

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

Grüniger, H.

H. Grüniger, D. Möbius, and H. Meyer, "Enhanced light reflection by dye monolayers at the air-water interface," J. Chem. Phys. 79, 3701-3710 (1983).
[CrossRef]

Hesselink, L.

Hirano, Y.

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

Hudson, B. S.

S. G. Stanton, R. Pecora, and B. S. Hudson, "Resonance enhanced dynamic Rayleigh scattering," J. Chem. Phys. 75, 5615-5626 (1981).
[CrossRef]

Huesmann, H.

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

Indelli, M. T.

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

Ishii, T.

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

Kaneko, F.

K. Shinbo, F. Kaneko, and S. Kobayashi, "Adsorption of cyanine dyes and optical properties of phosphatidic acid Langmuir monolayers and Langmuir-Blodgett films," Thin Solid Films 243, 630-633 (1994).
[CrossRef]

Kawata, J.

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

Kido, J.

J. Kido, H. Shionoya, and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett. 67, 2281-2283 (1995).
[CrossRef]

Kobayashi, S.

K. Shinbo, F. Kaneko, and S. Kobayashi, "Adsorption of cyanine dyes and optical properties of phosphatidic acid Langmuir monolayers and Langmuir-Blodgett films," Thin Solid Films 243, 630-633 (1994).
[CrossRef]

Kuhn, H.

V. Czikkely, H. D. Föresterling, and H. Kuhn, "Light absorption and structure of aggregates of dye molecules," Chem. Phys. Lett. 6, 11-14 (1970).
[CrossRef]

Lehmann, U.

M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
[CrossRef]

Martin, M. T.

M. T. Martin and D. Möbius, "Enhanced binding of porphyrin by a laterally organized monolayer," Thin Solid Films 284-285, 663-666 (1996).
[CrossRef]

Meyer, H.

M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
[CrossRef]

H. Grüniger, D. Möbius, and H. Meyer, "Enhanced light reflection by dye monolayers at the air-water interface," J. Chem. Phys. 79, 3701-3710 (1983).
[CrossRef]

Miura, Y. F.

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

Möbius, D.

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

M. T. Martin and D. Möbius, "Enhanced binding of porphyrin by a laterally organized monolayer," Thin Solid Films 284-285, 663-666 (1996).
[CrossRef]

M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
[CrossRef]

H. Grüniger, D. Möbius, and H. Meyer, "Enhanced light reflection by dye monolayers at the air-water interface," J. Chem. Phys. 79, 3701-3710 (1983).
[CrossRef]

Nagai, K.

J. Kido, H. Shionoya, and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett. 67, 2281-2283 (1995).
[CrossRef]

Odauchi, S.

Orrit, M.

M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
[CrossRef]

Pasternack, R. F.

R. F. Pasternack and P. J. Collings, "Resonance light scattering: a new technique for studying chromophore aggregation," Science 269, 935-939 (1995).
[CrossRef] [PubMed]

Pavanin, L.

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

Pecora, R.

S. G. Stanton, R. Pecora, and B. S. Hudson, "Resonance enhanced dynamic Rayleigh scattering," J. Chem. Phys. 75, 5615-5626 (1981).
[CrossRef]

Peumans, P.

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

Rampi, M. A.

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

Saito, K.

Shinbo, K.

K. Shinbo, F. Kaneko, and S. Kobayashi, "Adsorption of cyanine dyes and optical properties of phosphatidic acid Langmuir monolayers and Langmuir-Blodgett films," Thin Solid Films 243, 630-633 (1994).
[CrossRef]

Shionoya, H.

J. Kido, H. Shionoya, and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett. 67, 2281-2283 (1995).
[CrossRef]

Sochava, S. L.

Stanton, S. G.

S. G. Stanton, R. Pecora, and B. S. Hudson, "Resonance enhanced dynamic Rayleigh scattering," J. Chem. Phys. 75, 5615-5626 (1981).
[CrossRef]

Steinberg, I. Z.

J. Anglister and I. Z. Steinberg, "Resonance Rayleigh scattering of cyanine dyes in solution," J. Chem. Phys. 78, 5358-5368 (1983).
[CrossRef]

Sugi, M.

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

Wakamatsu, T.

Watanabe, K.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Yakimov, A.

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Kido, H. Shionoya, and K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)," Appl. Phys. Lett. 67, 2281-2283 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

V. Czikkely, H. D. Föresterling, and H. Kuhn, "Light absorption and structure of aggregates of dye molecules," Chem. Phys. Lett. 6, 11-14 (1970).
[CrossRef]

J. Appl. Phys. (1)

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

J. Chem. Phys. (4)

H. Grüniger, D. Möbius, and H. Meyer, "Enhanced light reflection by dye monolayers at the air-water interface," J. Chem. Phys. 79, 3701-3710 (1983).
[CrossRef]

M. Orrit, D. Möbius, U. Lehmann, and H. Meyer, "Reflection and transmission of light by dye monolayers," J. Chem. Phys. 85, 4966-4979 (1986).
[CrossRef]

S. G. Stanton, R. Pecora, and B. S. Hudson, "Resonance enhanced dynamic Rayleigh scattering," J. Chem. Phys. 75, 5615-5626 (1981).
[CrossRef]

J. Anglister and I. Z. Steinberg, "Resonance Rayleigh scattering of cyanine dyes in solution," J. Chem. Phys. 78, 5358-5368 (1983).
[CrossRef]

J. Phys. Chem. B (1)

K. Saito, "H-aggregate formation in squarylium Langmuir-Blodgett films," J. Phys. Chem. B 105, 4235-4238 (2001).
[CrossRef]

Opt. Lett. (1)

Science (1)

R. F. Pasternack and P. J. Collings, "Resonance light scattering: a new technique for studying chromophore aggregation," Science 269, 935-939 (1995).
[CrossRef] [PubMed]

Thin Solid Films (4)

H. Huesmann, C. A. Bignozzi, M. T. Indelli, L. Pavanin, M. A. Rampi, and D. Möbius, "Organization of a metal complex dyad in monolayers," Thin Solid Films 284-285, 62-65 (1996).
[CrossRef]

M. T. Martin and D. Möbius, "Enhanced binding of porphyrin by a laterally organized monolayer," Thin Solid Films 284-285, 663-666 (1996).
[CrossRef]

K. Shinbo, F. Kaneko, and S. Kobayashi, "Adsorption of cyanine dyes and optical properties of phosphatidic acid Langmuir monolayers and Langmuir-Blodgett films," Thin Solid Films 243, 630-633 (1994).
[CrossRef]

Y. Hirano, J. Kawata, Y. F. Miura, M. Sugi, and T. Ishii, "Control of aggregate formation in merocyanine Langmuir-Blodgett films," Thin Solid Films 327-329, 345-347 (1998).
[CrossRef]

Other (2)

Laser and Optics Guide 2 (Melles Griot Company, Japan, 1990).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Chemical structures of dye molecules: (a) merocyanine (MC), (b) squarylium (SQ).

Fig. 2
Fig. 2

Reflection measurement method used in this study. I i , incident light; I r , reflected light produced by the dye layer film sample; I r < , reflected light from the back interface of the substrate; I t , transmitting light.

Fig. 3
Fig. 3

Typical s-polarized relative reflection spectra ( R R sub ) s at θ = 45 ° and absorption spectra A ( λ ) of MC J-aggregates: (a) monolayer films, (b) five-layered films. Solid and dotted curves are ( R R sub ) s represented as a percentage, and A ( λ ) estimated from the measured transmission at θ = 0 ° , as an expression of ln ( T T sub ) , respectively.

Fig. 4
Fig. 4

Polarization dependence of R R sub spectra for the five-layered MC LB films.

Fig. 5
Fig. 5

Complex refractive index, n ̃ = n + i k , of the five-layered MC aggregate films, as a function of wavelength. Solid and dotted curves represent k ( λ ) estimated from the A ( λ ) data in Fig. 3b, and n ( λ ) obtained from the K–K transform of k ( λ ) , respectively.

Fig. 6
Fig. 6

Typical s-polarized ( R R sub ) s spectrum at θ = 45 ° (solid curve) and A ( λ ) spectrum (dotted curve) for the five-layered SQ LB films.

Fig. 7
Fig. 7

Polarization dependence of R R sub spectra for the five-layered SQ LB films.

Fig. 8
Fig. 8

Lorentz complex-refractive-index spectrum, n ̃ L ( λ ) , with a single resonant absorption band at ω = 2.2 eV ( λ = 564 nm ) for absorbing thin films. Solid and dotted curves represent k ( λ ) and n ( λ ) , respectively.

Fig. 9
Fig. 9

Calculated ( R R sub ) s spectrum at θ = 45 ° (solid curve) and A ( λ ) spectrum (dotted curve) estimated from the calculated transmission at θ = 0 ° , for three-layered structure of air–absorbing film ( d = 10 nm ) –glass substrate.

Fig. 10
Fig. 10

Polarization dependence of calculated R R sub spectra.

Fig. 11
Fig. 11

Absorbent-film-thickness dependence of calculated ( R R sub ) s spectra.

Fig. 12
Fig. 12

Calculated R R sub spectra (at θ = 0 ° ) for n ̃ L ( λ ) with various values of f 0 : 1, 1.5, and 2. Inset, corresponding n ̃ L ( λ ) curves.

Tables (1)

Tables Icon

Table 1 Parameter Values for Estimations of BK-7 Glass Refractive Index a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ϵ ̃ L ( ω ) = ϵ b + f 0 ( ω 0 2 ω 2 ) ( ω 0 2 ω 2 ) 2 + ( γ ω ) 2 + i f 0 γ ω ( ω 0 2 ω 2 ) 2 + ( γ ω ) 2 ,
ϵ C ( λ ) = a 0 + a 1 λ 2 + a 2 λ 2 + a 3 λ 4 + a 4 λ 6 + a 5 λ 8 ,
R = r 12 + r 23 exp [ i 2 k z ( 2 ) d ] 1 + r 12 r 23 exp [ i 2 k z ( 2 ) d ] 2 ,
r i ( i + 1 ) = n ̃ 2 ( i + 1 ) k z ( i ) n ̃ 2 ( i ) k z ( i + 1 ) n ̃ 2 ( i + 1 ) k z ( i ) + n ̃ 2 ( i ) k z ( i + 1 ) ,
i = 1 , 2 , ( p polarization ) ,
r i ( i + 1 ) = k z ( i ) k z ( i + 1 ) k z ( i ) + k z ( i + 1 ) ,
i = 1 , 2 , ( s polarization ) ,
k z ( i ) = 2 π λ [ n ̃ 2 ( i ) n 2 ( 1 ) sin 2 θ ] 1 2 , i = 1 , 2 , 3 ,
T = n ( 3 ) n ( 1 ) t 12 t 23 exp [ i k z ( 2 ) d ] 1 + r 12 r 23 exp [ i 2 k z ( 2 ) d ] 2 ,
t i ( i + 1 ) = 2 k z ( i ) k z ( i ) + k z ( i + 1 ) , i = 1 , 2 ,

Metrics