Abstract

This study describes the observation of large induced refractive index changes produced by 157nm excimer laser exposure in high-purity synthetic silica glasses. With 157nm exposure, large induced changes are observed within a few hundred thousand pulses of exposure. Similar to 193nm exposures, exposure with polarized 157nm light yields polarization-induced birefringence (PIB). However, the 157nm exposure also exhibits a behavior not observed with 193nm exposures; namely, the initial response of the glass is a decrease in refractive index, followed by an increase with continued exposure. An explanation of the behaviors for both wavelength results is proposed where the induced refractive index is considered to arise from two different concurrent phenomena. One produces a decreased refractive index and also accounts for the PIB. The other, which accounts for the increased refractive index, is associated with an isotropic laser-induced volume change.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Rothschild, D. J. Ehrlich, and D. C. Shaver, "Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica," Appl. Phys. Lett. 55, 1276-12785 (1989).
    [CrossRef]
  2. R. E. Schenker and W. G. Oldham J., "Ultraviolet-induced densification in fused silica," Appl. Phys. 82, 1065-1071 (1997).
  3. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, "Densification of fused silica under 193-nm excitation," J. Opt. Soc. Am. B 14, 1606-1615 (1997).
    [CrossRef]
  4. C. K. Van Peski, R. Morton, and Z. Bor, "Behavior of fused silica irradiated by low level 193-nm excimer laser for tens of billions of pulses," J. Non-Cryst. Solids 265, 285-289 (2000).
    [CrossRef]
  5. C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
    [CrossRef]
  6. V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
    [CrossRef]
  7. F. Piao, W. G. Oldham, and E. E. Haller, "Ultra-violet induced densification in fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
    [CrossRef]
  8. R. L. Sandstrom, R. G. Morton, and T. P. Duffey, "Dependence of compaction in fused silica on laser pulse width at 248-nm," in Laser Induced Damage in Optical Materials, G.J.Exarhos, A.H.Guenther, M.R.Kozlowski, K.L.Lewis, and M.J.Soileau, eds., Proc. SPIE3578, 28-30 (2003).
  9. B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
    [CrossRef]
  10. M. Mlejnek, "Viscoelastic model of photo-induced anisotropic density changes in glasses," Phys. Chem. Glasses (to be published).
  11. J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).
  12. D. C. Allan, R. J. Araujo, C. M. Smith, and N. F. Borrelli, "Induced density changes in 193-nm excimer-laser-damaged silica glass: a kinetic model," in Optical Microlithography XVI, B.Smith, ed., Proc. SPIE 5377, 827-835 (2004).
  13. N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).
  14. G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).
  15. G. Pacchioni and G. Ierano, "Ab initio theory of optical transitions of point defects in SiO2," Phys. Rev. B 57, 818-832 (1998).
    [CrossRef]
  16. G. H. Sigel, "Optical absorption of glasses," Interaction with Electromagnetic Radiation, Vol. 12 of Treatise on Materials Science and Technology (Academic, 1978), pp. 5-89.
  17. U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).
  18. V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).
  19. The 150 ppm OH glass was exposed with polarized light for only one fluence, so PIB reciprocity cannot be plotted.
  20. We have also done exposures of the 1200 ppm OH glass using an unpolarized 172 nm excimer lamp. Under these conditions we see similar behavior to that with 157 nm exposures, specifically, initial decreased refractive index followed by increased refractive index with continued exposure. It appears that the 172 nm induced behavior could be equally described by the formulation of Eq. , with the f− term dominating.
  21. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

2005

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).

2003

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

2002

N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).

2001

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

2000

C. K. Van Peski, R. Morton, and Z. Bor, "Behavior of fused silica irradiated by low level 193-nm excimer laser for tens of billions of pulses," J. Non-Cryst. Solids 265, 285-289 (2000).
[CrossRef]

F. Piao, W. G. Oldham, and E. E. Haller, "Ultra-violet induced densification in fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

1999

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

1998

G. Pacchioni and G. Ierano, "Ab initio theory of optical transitions of point defects in SiO2," Phys. Rev. B 57, 818-832 (1998).
[CrossRef]

1997

R. E. Schenker and W. G. Oldham J., "Ultraviolet-induced densification in fused silica," Appl. Phys. 82, 1065-1071 (1997).

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, "Densification of fused silica under 193-nm excitation," J. Opt. Soc. Am. B 14, 1606-1615 (1997).
[CrossRef]

1989

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, "Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica," Appl. Phys. Lett. 55, 1276-12785 (1989).
[CrossRef]

1987

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).

Algots, J. M.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Allan, D. C.

N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, "Densification of fused silica under 193-nm excitation," J. Opt. Soc. Am. B 14, 1606-1615 (1997).
[CrossRef]

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

D. C. Allan, R. J. Araujo, C. M. Smith, and N. F. Borrelli, "Induced density changes in 193-nm excimer-laser-damaged silica glass: a kinetic model," in Optical Microlithography XVI, B.Smith, ed., Proc. SPIE 5377, 827-835 (2004).

Araujo, R. J.

D. C. Allan, R. J. Araujo, C. M. Smith, and N. F. Borrelli, "Induced density changes in 193-nm excimer-laser-damaged silica glass: a kinetic model," in Optical Microlithography XVI, B.Smith, ed., Proc. SPIE 5377, 827-835 (2004).

Bor, Z.

C. K. Van Peski, R. Morton, and Z. Bor, "Behavior of fused silica irradiated by low level 193-nm excimer laser for tens of billions of pulses," J. Non-Cryst. Solids 265, 285-289 (2000).
[CrossRef]

Borrelli, N. F.

N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, "Densification of fused silica under 193-nm excitation," J. Opt. Soc. Am. B 14, 1606-1615 (1997).
[CrossRef]

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

D. C. Allan, R. J. Araujo, C. M. Smith, and N. F. Borrelli, "Induced density changes in 193-nm excimer-laser-damaged silica glass: a kinetic model," in Optical Microlithography XVI, B.Smith, ed., Proc. SPIE 5377, 827-835 (2004).

Duffey, T. P.

R. L. Sandstrom, R. G. Morton, and T. P. Duffey, "Dependence of compaction in fused silica on laser pulse width at 248-nm," in Laser Induced Damage in Optical Materials, G.J.Exarhos, A.H.Guenther, M.R.Kozlowski, K.L.Lewis, and M.J.Soileau, eds., Proc. SPIE3578, 28-30 (2003).

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, "Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica," Appl. Phys. Lett. 55, 1276-12785 (1989).
[CrossRef]

Eva, E.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Fasold, G.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

French, R. H.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).

Gerhard, M.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Grenville, A.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

Haller, E. E.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultra-violet induced densification in fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

Heckle, C. E.

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

Ierano, G.

G. Pacchioni and G. Ierano, "Ab initio theory of optical transitions of point defects in SiO2," Phys. Rev. B 57, 818-832 (1998).
[CrossRef]

Jones, D. J.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).

Kahlke, M.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

Kaiser, S.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

Khotimchenko, V. S.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).

Kühn, B.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

Kuksenko, K. N.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).

Lemon, M. F.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).

Liberman, V.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

Lindner, R.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Maroevic, P.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Martin, R.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

Mlejnek, M.

M. Mlejnek, "Viscoelastic model of photo-induced anisotropic density changes in glasses," Phys. Chem. Glasses (to be published).

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

Moll, J.

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

Morton, R.

C. K. Van Peski, R. Morton, and Z. Bor, "Behavior of fused silica irradiated by low level 193-nm excimer laser for tens of billions of pulses," J. Non-Cryst. Solids 265, 285-289 (2000).
[CrossRef]

Morton, R. G.

R. L. Sandstrom, R. G. Morton, and T. P. Duffey, "Dependence of compaction in fused silica on laser pulse width at 248-nm," in Laser Induced Damage in Optical Materials, G.J.Exarhos, A.H.Guenther, M.R.Kozlowski, K.L.Lewis, and M.J.Soileau, eds., Proc. SPIE3578, 28-30 (2003).

Natura, U.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

Neukirch, U.

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

Novak, I. I.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).

Oldham, W. G.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultra-violet induced densification in fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

Oldham J., W. G.

R. E. Schenker and W. G. Oldham J., "Ultraviolet-induced densification in fused silica," Appl. Phys. 82, 1065-1071 (1997).

Pacchioni, G.

G. Pacchioni and G. Ierano, "Ab initio theory of optical transitions of point defects in SiO2," Phys. Rev. B 57, 818-832 (1998).
[CrossRef]

Partlo, W.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Piao, F.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultra-violet induced densification in fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

Price, J. J.

N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

Radosevic, I.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

Rothschild, M.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, "Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica," Appl. Phys. Lett. 55, 1276-12785 (1989).
[CrossRef]

Sandstrom, R.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Sandstrom, R. L.

R. L. Sandstrom, R. G. Morton, and T. P. Duffey, "Dependence of compaction in fused silica on laser pulse width at 248-nm," in Laser Induced Damage in Optical Materials, G.J.Exarhos, A.H.Guenther, M.R.Kozlowski, K.L.Lewis, and M.J.Soileau, eds., Proc. SPIE3578, 28-30 (2003).

Schenker, R. E.

R. E. Schenker and W. G. Oldham J., "Ultraviolet-induced densification in fused silica," Appl. Phys. 82, 1065-1071 (1997).

Sedlacek, J. H. C.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

Seward, T. P.

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, "Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica," Appl. Phys. Lett. 55, 1276-12785 (1989).
[CrossRef]

Sigel, G. H.

G. H. Sigel, "Optical absorption of glasses," Interaction with Electromagnetic Radiation, Vol. 12 of Treatise on Materials Science and Technology (Academic, 1978), pp. 5-89.

Smith, C.

Smith, C. M.

N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

D. C. Allan, R. J. Araujo, C. M. Smith, and N. F. Borrelli, "Induced density changes in 193-nm excimer-laser-damaged silica glass: a kinetic model," in Optical Microlithography XVI, B.Smith, ed., Proc. SPIE 5377, 827-835 (2004).

Sochivkin, G. M.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).

Sohr, O.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

Stamminger, M.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

Stietz, F.

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

Tan, G. L.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).

Uebbing, B.

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

Uttaro, R. S.

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

Van Peski, C. K.

C. K. Van Peski, R. Morton, and Z. Bor, "Behavior of fused silica irradiated by low level 193-nm excimer laser for tens of billions of pulses," J. Non-Cryst. Solids 265, 285-289 (2000).
[CrossRef]

Appl. Phys.

R. E. Schenker and W. G. Oldham J., "Ultraviolet-induced densification in fused silica," Appl. Phys. 82, 1065-1071 (1997).

Appl. Phys. Lett.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, "Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica," Appl. Phys. Lett. 55, 1276-12785 (1989).
[CrossRef]

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laser-induced expansion in hydrogen-loaded silica," Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

J. Appl. Phys.

F. Piao, W. G. Oldham, and E. E. Haller, "Ultra-violet induced densification in fused silica," J. Appl. Phys. 87, 3287-3293 (2000).
[CrossRef]

J. Non-Cryst. Solids

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, and A. Grenville, "Excimer-laser-induced densification of fused silica: laser fluence and material-grade effects on the scaling law," J. Non-Cryst. Solids 244, 159-172 (1999).
[CrossRef]

B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic, and S. Kaiser, "Compaction versus expansion behavior related to the OH content of synthetic fused silica under prolonged UV-laser irradiation," J. Non-Cryst. Solids 330, 23-32 (2003).
[CrossRef]

C. K. Van Peski, R. Morton, and Z. Bor, "Behavior of fused silica irradiated by low level 193-nm excimer laser for tens of billions of pulses," J. Non-Cryst. Solids 265, 285-289 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

N. F. Borrelli, C. M. Smith, J. J. Price, and D. C. Allan, "Polarized excimer laser-induced birefringence in silica," Opt. Lett. 80, 219-221 (2002).

Phys. Rev. B

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, "Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry," Phys. Rev. B 72, 1-10 (2005).

G. Pacchioni and G. Ierano, "Ab initio theory of optical transitions of point defects in SiO2," Phys. Rev. B 57, 818-832 (1998).
[CrossRef]

Zh. Prikl. Spektrosk.

V. S. Khotimchenko, G. M. Sochivkin, I. I. Novak, and K. N. Kuksenko, "Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry," Zh. Prikl. Spektrosk. 46, 987-991 (1987).

Other

The 150 ppm OH glass was exposed with polarized light for only one fluence, so PIB reciprocity cannot be plotted.

We have also done exposures of the 1200 ppm OH glass using an unpolarized 172 nm excimer lamp. Under these conditions we see similar behavior to that with 157 nm exposures, specifically, initial decreased refractive index followed by increased refractive index with continued exposure. It appears that the 172 nm induced behavior could be equally described by the formulation of Eq. , with the f− term dominating.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, "Mechanisms of radiation induced defect generation in fused silica," in Laser-Induced Damage in Optical Materials, G.J.Exharos, A.H.Guentheer, N.Kaiser, K.L.Lewis, M.J.Soileau, and C.J.Stolz, eds., Proc. SPIE5273, 155-164 (2003).

G. H. Sigel, "Optical absorption of glasses," Interaction with Electromagnetic Radiation, Vol. 12 of Treatise on Materials Science and Technology (Academic, 1978), pp. 5-89.

U. Neukirch, D. C. Allan, N. F. Borrelli, C. E. Heckle, M. Mlejnek, J. Moll, and C. M. Smith, "Laser-induced birefringence in fused silica from polarized lasers," in Optical Microlithography XVII, B.Smith, ed., Proc. SPIE5754, 638-645 (2005).

M. Mlejnek, "Viscoelastic model of photo-induced anisotropic density changes in glasses," Phys. Chem. Glasses (to be published).

J. M. Algots, R. Sandstrom, W. Partlo, P. Maroevic, E. Eva, M. Gerhard, R. Lindner, and F. Stietz, "Compaction and rarefaction of fused silica with 193-nm excimer laser exposure," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE5040, 1639-1650 (2003).

D. C. Allan, R. J. Araujo, C. M. Smith, and N. F. Borrelli, "Induced density changes in 193-nm excimer-laser-damaged silica glass: a kinetic model," in Optical Microlithography XVI, B.Smith, ed., Proc. SPIE 5377, 827-835 (2004).

R. L. Sandstrom, R. G. Morton, and T. P. Duffey, "Dependence of compaction in fused silica on laser pulse width at 248-nm," in Laser Induced Damage in Optical Materials, G.J.Exarhos, A.H.Guenther, M.R.Kozlowski, K.L.Lewis, and M.J.Soileau, eds., Proc. SPIE3578, 28-30 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Induced wavefront distortion, expressed as Δ [ ( nL ) L ] as a function of pulses for glasses of different compositions. Exposure fluence was 34 + 3 uJ cm 2 . Figure taken from Ref. [9] (used with permission).

Fig. 2
Fig. 2

Vacuum UV spectra of glasses used in this study. OH contents are given in the legend.

Fig. 3
Fig. 3

(a) Induced refractive index change (nm/mm) and (b) PIB versus millions of pulses for high OH glass, exposed to different fluences at 157 nm .

Fig. 4
Fig. 4

PolScope™ vector diagrams of high OH sample exposed to 0.6 × 10 6 pulses (left) and 3 × 10 6 pulses (right) at 157 nm through a 3 mm aperture. Vectors indicate direction of slow axis of retardance. Vectors within the aperture are perpendicular to incident exposure polarization. Vectors around aperture are tangential early in exposure (left) and radial later (right).

Fig. 5
Fig. 5

(a) Induced refractive index change (nm/mm), (b) PIB (nm/mm) versus millions of pulses for different OH glasses, exposed to fluence 0.24 mJ cm 2 and (c) samples shown in (b) out to longer pulse counts.

Fig. 6
Fig. 6

Induced refractive index change (nm/mm) vs. dose (NF) for (a) 1200 ppm OH glass; (b) 100 ppm OH glass exposed to different fluences; (c) PIB (nm/mm) as a function of dose (NF) for high OH glass, exposed to different fluences at 157 nm .

Fig. 7
Fig. 7

(a) Induced refractive index change (nm/mm) (b) PIB (nm/mm) versus millions of pulses for 1200 ppm OH glasses with different H2 contents exposed to fluence 0.24 mJ cm 2 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ( nL ) = f + ( N F ) f ( N F , O H ) .
PIB f ( N F , O H ) .
f = K ( O H ) [ 1 exp ( k N F ) ] .
Δ ( nL ) = K + ( λ ex ) f + ( F , N ) K ( λ ex ) f ( N F , O H ) .
Δ ( nL ) = K + ( λ ex ) f + ( F , N , H 2 ) K ( λ ex ) f ( N F , O H ) .

Metrics