Abstract

The validity of the theory of McCumber [Phys. Rev. 136, A954–A957 (1964) ] has been tested by applying it to a number of ground-state transition in various rare-earth-doped glasses. Special attention was given to those aspects of the experimental procedure that can lead to systematic errors, such as reabsorption of fluorescence and baseline subtraction uncertainties in the absorption measurements. To ensure consistency between absorption and fluorescence measurements, we used the same geometry for light collection and measurement. With these experimental procedures properly implemented, we find that in all cases there is excellent agreement between the spectral shape of calculated and measured cross-section spectra at room temperature. This is true even for the thermally coupled (H922,F524) and F324 levels of Nd, which span an energy range of 2000cm1, much larger than the typical width of a single Stark level manifold. The results suggest that, at room temperature, the McCumber theory is not restricted to crystalline hosts but remains valid for the broader transitions characteristic of rare-earth-doped glass.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription