Abstract

Transmission through a single subwavelength slit surrounded by nonperiodic or approximately periodic grooves in perfect conductive film has been analyzed numerically by the finite-difference time-domain method. Results show that the periodicity of the grooves is not the necessary condition to enhance the transmission, but is sufficient to obtain high enhancement. A spectrum with low enhancement and multiple peaks is obtained through a slit with nonperiodic grooves that is due to the resonances at different wavelengths caused by nonperiodicity. The spectrum of a slit with approximately periodic grooves is almost similar to that of a slit with absolutely periodic grooves regardless of whether the grooves are symmetric with respect to the slit, especially when the deflection of the grooves is very small compared to the grooves’ period.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002).
    [CrossRef]
  4. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
    [CrossRef]
  5. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
    [CrossRef]
  6. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
    [CrossRef]
  7. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, S159-S164 (2005).
    [CrossRef]
  8. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13, 763-769 (2005).
    [CrossRef] [PubMed]
  9. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005).
    [CrossRef] [PubMed]
  10. K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
    [CrossRef]
  11. K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
    [CrossRef]
  12. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
    [CrossRef] [PubMed]
  13. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  14. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  15. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
    [CrossRef]
  16. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  17. F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced confined light transmission by single subwavelength apertures in metallic films," Appl. Opt. 42, 6811-6815 (2003).
    [CrossRef] [PubMed]
  18. D. A. Thomas and H. P. Hughes, "Enhanced optical transmission through a subwavelength 1D aperture," Solid State Commun. 129, 519-524 (2004).
    [CrossRef]
  19. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
    [CrossRef] [PubMed]
  20. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  21. F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
    [CrossRef]
  22. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express 14, 7-18 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (8)

H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13, 763-769 (2005).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, S159-S164 (2005).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

2004 (6)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

D. A. Thomas and H. P. Hughes, "Enhanced optical transmission through a subwavelength 1D aperture," Solid State Commun. 129, 519-524 (2004).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

2003 (4)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced confined light transmission by single subwavelength apertures in metallic films," Appl. Opt. 42, 6811-6815 (2003).
[CrossRef] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

2001 (1)

Agrawal, A.

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, S159-S164 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

Baida, F. I.

Bulu, I.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, S159-S164 (2005).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

Caglayan, H.

Campillo, I.

Cao, H.

Degiron, A.

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dolado, J. S.

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express 14, 7-18 (2006).
[CrossRef] [PubMed]

F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Guizal, B.

Hatakoshi, G.

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

Hughes, H. P.

D. A. Thomas and H. P. Hughes, "Enhanced optical transmission through a subwavelength 1D aperture," Solid State Commun. 129, 519-524 (2004).
[CrossRef]

Ikari, T.

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

Ishihara, K.

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

Ito, H.

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Minamide, H.

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

Nahata, A.

Ohashi, K.

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

Ozbay, E.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, S159-S164 (2005).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

Pellerin, K. M.

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Sáenz, J. J.

F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express 14, 7-18 (2006).
[CrossRef] [PubMed]

F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

Shikata, J.

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

Thio, T.

Thomas, D. A.

D. A. Thomas and H. P. Hughes, "Enhanced optical transmission through a subwavelength 1D aperture," Solid State Commun. 129, 519-524 (2004).
[CrossRef]

Van Labeke, D.

Yokoyama, H.

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, S159-S164 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (2)

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Jpn. J. Appl. Phys. Part 2 44, L929-L931 (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, "Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures," Jpn. J. Appl. Phys. Part 2 44, L1005-L1007 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Solid State Commun. (1)

D. A. Thomas and H. P. Hughes, "Enhanced optical transmission through a subwavelength 1D aperture," Solid State Commun. 129, 519-524 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematics of the samples: (1) a bare slit without grooves, (2) slit with absolute periodic grooves as a reference, (3) slit with approximately periodic grooves, (4) slit with nonperiodic grooves.

Fig. 2
Fig. 2

Spectra of samples (1) and (2). The inset shows the spectrum of the enhancement factor of sample (2).

Fig. 3
Fig. 3

Plots of E x at transmission peaks of samples with different periodic grooves. The incident field has been subtracted and all plots are normalized by the maximum value in Fig. 3a. (a) Absolute periodicity, with incidence of 542 nm and an EF of 10.8; (b) asymmetric nonperiodicity, with incidence of 553 nm and an EF of 2.3; (c) symmetric nonperiodicity, with incidence of 546 nm and an EF of 4.4; (d) symmetric approximate periodicity, with a RMSE of 16.3, incidence of 535 nm , and an EF of 11.0; (e) symmetric approximate periodicity, with a RMSE of 59.1, incidence of 533 nm , and an EF of 5.5; (f) asymmetric approximate periodicity, with a RMSE of 15.5, incidence of 541 nm , and an EF of 10.7; (g) asymmetric approximate periodicity, with a RMSE of 45.4, incidence of 531 nm , and an EF of 6.3.

Fig. 4
Fig. 4

Four typical spectra of samples with asymmetric nonperiodic grooves. Values of p ± 1 p ± N for the curves are the following: (A) 530, 370, 570, 660, 430; 590, 630, 340, 360 560, with a RMSE of 112.63; (B) 290, 490, 640, 570, 460; 370, 650, 500, 690, 380, with a RMSE of 126.51; (C) 500, 440, 710, 470, 360; 560, 480, 290, 510, 660, with a RMSE of 119.15; (D) 250, 420, 580, 720, 430; 580, 210, 390, 130, 400, with a RMSE of 172.88.

Fig. 5
Fig. 5

Four typical spectra of samples with symmetric nonperiodic grooves. Values of p ± 1 p ± N for the curves are the following: (A) 530, 370, 570, 660, 430, with a RMSE of 102.45; (B) 290, 490, 640, 570, 460, with a RMSE of 118.15; (C) 500, 440, 710, 470, 360, with a RMSE of 116.72; (D) 250, 420, 580, 720, 430, with a RMSE of 159.12.

Fig. 6
Fig. 6

Five typical spectra of samples with symmetric approximately periodic grooves. Values of p ± 1 p ± N for the curves are the following: (A) 500, 490, 500, 490, 500, with a RMSE of 4.90; (B) 490, 480, 500, 520, 480, with a RMSE of 14.97; (C) 510, 480, 470, 520, 540, with a RMSE of 25.77; (D) 540, 490, 480, 560, 470, with a RMSE of 35.44; (E) 530, 560, 420, 470, 510, with a RMSE of 48.74.

Fig. 7
Fig. 7

EF at the transmission peak as a function of the RMSE for samples with symmetric approximately periodic grooves. The black circle is a reference value of the slit with absolute periodic grooves.

Fig. 8
Fig. 8

Ratio of wavelength at transmission peak to average of p ± 1 p ± N as a function of the RMSE for samples with symmetric approximately periodic grooves. The black circle is a reference value of the slit with absolute periodic grooves.

Fig. 9
Fig. 9

Five typical spectra of samples with asymmetric approximately periodic grooves. Values of p ± 1 p ± N for the curves are the following: (A) 510, 500, 490, 500, 500; 500, 500, 500, 510, 500, with a RMSE of 5.39; (B) 500, 470, 500, 530, 500; 490, 500, 520, 510, 510, with a RMSE of 15.52; (C) 480, 490, 530, 510, 450; 490, 510, 480, 540, 480, with a RMSE of 25.38; (D) 490, 480, 440, 460, 520; 560, 450, 480, 530, 500, with a RMSE of 35.62; (E) 510, 500, 490, 470, 570; 530, 430, 420, 550, 500, with a RMSE of 45.40.

Fig. 10
Fig. 10

EF at transmission peak as a function of the RMSE for samples with asymmetric approximately periodic grooves. The black circle is a reference value of the slit with absolute periodic grooves.

Fig. 11
Fig. 11

Ratio of wavelength at transmission peak to average of p ± 1 p ± N as a function of the RMSE for samples with asymmetric approximately periodic grooves. The black circle is a reference value of the slit with absolute periodic grooves.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = [ 1 + j = N N α w L j cos ( 2 π λ n eff L j + π 2 ) ] 2 ,
A ( λ ) = [ 1 + 2 j = 1 N α w L j cos ( 2 π λ n eff L j + π 2 ) ] 2 .
Δ A = 4 A j = 1 N [ α w L j 2 cos ( 2 π λ n eff L f + π 2 ) + 2 π α w L j λ n eff sin ( 2 π λ n eff L j + π 2 ) ] Δ L j .

Metrics