Abstract

Ultrashort pulse propagation in a polarization-maintaining microstructured fiber (with 1μm core diameter and 1.1m length) is investigated experimentally and theoretically. For an 80MHz train of 130fs pulses with average powers up to 13.8mW launched into the lowest transverse mode of the fiber, the output spectra consist of discrete, multiple solitons that shift continuously to lower energies. The number of solitons and the amount that they shift both increase with the launched power. All of the data are quantitatively consistent with solutions of the nonlinear Schrödinger equation, but only when the Raman nonlinearity is treated without approximation, and self-steepening is included. These results remove any ambiguity as to the nature of these multiple solitons; they arise owing to the breakup of high-order solitons in the presence of nonlinear processes beyond self-phase modulation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  3. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  5. H. Lim, F. O. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
    [PubMed]
  6. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
    [CrossRef]
  7. I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980).
    [CrossRef]
  8. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
    [CrossRef]
  9. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
    [PubMed]
  10. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber," J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  11. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  12. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  13. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002).
    [CrossRef]
  14. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  15. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
    [CrossRef]
  16. R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  17. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
    [CrossRef]
  18. R. H. Stolen, "Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
    [CrossRef]
  19. P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
    [CrossRef]
  20. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
    [CrossRef]
  21. B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
    [CrossRef]
  22. B. R. Wahburn, S. E. Ralph, and R. S. Winderler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express 10, 575-580 (2002).
  23. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
    [CrossRef]
  24. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002).
    [PubMed]
  25. C. F. Chen and S. Chi, "Femtosecond second-order solitons in optical fiber transmission," Optik 116, 331-336 (2005).
    [CrossRef]
  26. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  27. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  28. G. Dong and Z. Liu, "Soliton resulting from the combined effect of higher-order dispersion, self-steepening and nonlinearity in an optical fiber," Opt. Commun. 128, 8-14 (1996).
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  30. L. F. Mollenauer, R. H. Stolen, J. P. Gorden, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983).
    [CrossRef] [PubMed]
  31. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, 2003).
  32. W. Hodel and H. P. Weber, "Decay of femtosecond higher-order solitons in an optical fiber induced by Raman self-pumping," Opt. Lett. 12, 924-926 (1987).
    [CrossRef] [PubMed]
  33. K. Tai, A. Hasegawa, and N. Bekki, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett. 13, 392-394 (1988).
    [CrossRef] [PubMed]

2005 (1)

C. F. Chen and S. Chi, "Femtosecond second-order solitons in optical fiber transmission," Optik 116, 331-336 (2005).
[CrossRef]

2002 (11)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
[PubMed]

B. R. Wahburn, S. E. Ralph, and R. S. Winderler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express 10, 575-580 (2002).

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002).
[PubMed]

A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

H. Lim, F. O. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
[PubMed]

2001 (4)

2000 (3)

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1996 (2)

G. Dong and Z. Liu, "Soliton resulting from the combined effect of higher-order dispersion, self-steepening and nonlinearity in an optical fiber," Opt. Commun. 128, 8-14 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

1988 (1)

1987 (3)

W. Hodel and H. P. Weber, "Decay of femtosecond higher-order solitons in an optical fiber induced by Raman self-pumping," Opt. Lett. 12, 924-926 (1987).
[CrossRef] [PubMed]

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
[CrossRef]

1986 (2)

1983 (1)

1980 (1)

I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980).
[CrossRef]

1975 (1)

R. H. Stolen, "Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Alfano, R. R.

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Apolonski, A.

Arriaga, J.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Atkin, D. M.

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
[CrossRef]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Bekki, N.

Birks, T. A.

Broeng, J.

Chau, A. H. L.

Chen, C. F.

C. F. Chen and S. Chi, "Femtosecond second-order solitons in optical fiber transmission," Optik 116, 331-336 (2005).
[CrossRef]

Chi, S.

C. F. Chen and S. Chi, "Femtosecond second-order solitons in optical fiber transmission," Optik 116, 331-336 (2005).
[CrossRef]

Coen, S.

Cormack, I. G.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Dong, G.

G. Dong and Z. Liu, "Soliton resulting from the combined effect of higher-order dispersion, self-steepening and nonlinearity in an optical fiber," Opt. Commun. 128, 8-14 (1996).
[CrossRef]

Drexler, W.

Dudley, J. M.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

Eggleton, B. J.

Fiorentino, M.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Fujita, M.

Genty, G.

Gorden, J. P.

Gordon, J. P.

J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980).
[CrossRef]

Grossard, N.

Hale, A.

Hansch, T. W.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Harvey, J. D.

Hasegawa, A.

Hodel, W.

W. Hodel and H. P. Weber, "Decay of femtosecond higher-order solitons in an optical fiber induced by Raman self-pumping," Opt. Lett. 12, 924-926 (1987).
[CrossRef] [PubMed]

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Ilday, F. O.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Kaivola, M.

Kawanishi, S.

Kerbage, C.

Knight, J. C.

A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002).
[CrossRef]

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Kubota, H.

Kumar, P.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Lacourt, P. A.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

Lehtonen, M.

Leonhardt, R.

Lim, H.

Liu, Z.

G. Dong and Z. Liu, "Soliton resulting from the combined effect of higher-order dispersion, self-steepening and nonlinearity in an optical fiber," Opt. Commun. 128, 8-14 (1996).
[CrossRef]

Ludvigsen, H.

Maillotte, H.

Man, T. P. M.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Matsumoto, M.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, 2003).

Mitschke, F. M.

Mollenauer, L. F.

Mollenhauer, I. F.

I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980).
[CrossRef]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Mortensen, N. A.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Ortigosa-Blanch, A.

Povazay, B.

Provino, L.

Ralph, S. E.

B. R. Wahburn, S. E. Ralph, and R. S. Winderler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express 10, 575-580 (2002).

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

Reid, D. T.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

Rhodes, W. T.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Russel, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Russell, P. St. J.

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002).
[CrossRef]

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Sharping, J. E.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Silvestre, E.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, J. P. Gorden, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983).
[CrossRef] [PubMed]

I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980).
[CrossRef]

R. H. Stolen, "Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
[CrossRef]

Suzuki, K.

Tai, K.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Tanaka, M.

Tomlinson, W. J.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Unterhuber, A.

Wadsworth, W. J.

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002).
[CrossRef]

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber," J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Wahburn, B. R.

Washburn, B. R.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

Weber, H. P.

W. Hodel and H. P. Weber, "Decay of femtosecond higher-order solitons in an optical fiber induced by Raman self-pumping," Opt. Lett. 12, 924-926 (1987).
[CrossRef] [PubMed]

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

Winderler, R. S.

Wise, F. W.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

Electron. Lett. (3)

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. H. Stolen, "Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002).
[CrossRef]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
[CrossRef]

J. Mod. Opt. (1)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

G. Dong and Z. Liu, "Soliton resulting from the combined effect of higher-order dispersion, self-steepening and nonlinearity in an optical fiber," Opt. Commun. 128, 8-14 (1996).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Optik (1)

C. F. Chen and S. Chi, "Femtosecond second-order solitons in optical fiber transmission," Optik 116, 331-336 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A scanning electron micrograph, in cross section, of the photonic crystal fiber used in the experiment.

Fig. 2
Fig. 2

Experimental output spectra of the photonic crystal fiber pumped at different average propagating powers (shown at right). The spectra marked with (a) and (b) have the most-shifted and the second-most-shifted solitons, respectively, centered at 850 nm .

Fig. 3
Fig. 3

Frequency shifts of the experimental peaks in Fig. 2 and simulated components from Fig. 7 versus average propagating power. Simulated results are marked with circles.

Fig. 4
Fig. 4

Spectrum of the PCF bent at (a) 30, (b) 50, (c) 70 cm , and (d) the whole length of the fiber with 13.8 mW average power launched into the fundamental mode.

Fig. 5
Fig. 5

Frequency shifts of the peaks in Fig. 4, and Fig. 8 versus propagation length. Squares represent the frequency shifts of the spectral components observed in the experiment and circles indicate the simulation values for shifts.

Fig. 6
Fig. 6

Spatial profile of the fiber output when (a) the most-shifted soliton is centered at 850 nm and (b) the second-most-shifted soliton is at 850 nm . These correspond to spectra (a) and (b), respectively, of Fig. 2.

Fig. 7
Fig. 7

Simulated spectra at different average propagating powers. Each spectrum was calculated for the same average propagating powers as in the experimental results shown in Fig. 2.

Fig. 8
Fig. 8

Numerical solution of the GNLS equation. These are numerical spectra at four different lengths with 13.8 mW average propagating power.

Fig. 9
Fig. 9

Group-velocity dispersion used in the simulation. This is the dispersion calculated by using a fully vectorial beam-propagation method and an ideal approximation to the fiber cross section.

Fig. 10
Fig. 10

Comparison of the simulated output spectra with 13.8 mW average propagating power, obtained from Eq. (1) (a) with all terms included, (b) neglecting the self-steepening term, and (c) by applying the slowly varying envelope approximation to the Raman term. Note that while the self-steepening term differentially modifies the rate of Raman shifting, the slowly varying envelope approximation fails to capture the proper soliton breakup.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A z = α 2 A m = 1 6 β m i m 1 m ! m A t m + i γ ( 1 + i ω o t ) [ A ( z , t ) + R ( t ) A ( z , t t ) 2 d t ] .
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,
N 2 = γ P o T o 2 β 2
A ( z , t t ) 2 A ( z , t ) 2 t t A ( z , t ) 2
R ( t ) A ( z , t t ) 2 d t A ( z , t ) 2 T R t A ( z , t ) 2 ,
T R = t R ( t ) d t = f R t h R ( t ) d t .

Metrics