Abstract

We present a detailed analysis of potassium–sodium and silver–sodium ion-exchange processes for fabricating waveguides in glass doped with PbS semiconductor quantum dots. We compare the propagation losses of these waveguides, and we discuss the sources of these losses. In addition, we demonstrate a fourfold reduction in the propagation loss previously reported for potassium–sodium ion-exchanged waveguides and show that waveguides can be produced at additional quantum-dot resonances using both methods. We show that the near-infrared optical properties of these quantum dots remain intact by comparing the waveguide and bulk (unguided) luminescence spectra. Measurements of the near-field mode profiles show a high level of field confinement, which make these waveguides ideal for nonlinear optical (high-intensity) applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
    [CrossRef]
  2. J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.
  3. N. F. Borrelli and D. W. Smith, "Quantum confinement of PbS microcrystals in glass," J. Non-Cryst. Solids 180, 25-31 (1994).
    [CrossRef]
  4. Al. L. Éfros and A. L. Éfros, "Interband absorption of light in a semiconductor sphere," Sov. Phys. Semicond. 16, 772-775 (1982).
  5. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
    [CrossRef]
  6. I. Kang and F. W. Wise, "Electronic structure and optical properties of PbS and PbSe quantum dots," J. Opt. Soc. Am. B 14, 1632-1646 (1997).
    [CrossRef]
  7. E. Hanamura, "Very large optical nonlinearity of semiconductor microcrystallites," Phys. Rev. B 37, 1273-1279 (1988).
    [CrossRef]
  8. K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
    [CrossRef]
  9. A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, "Glass doped with PbS quantum dots for passive Q switching of a 1.5-μm laser," Appl. Opt. 39, 4345-4347 (2000).
    [CrossRef]
  10. K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
    [CrossRef]
  11. T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
    [CrossRef]
  12. P. T. Guerreiro, S. G. Lee, A. S. Rodrigues, Y. Z. Hu, E. M. Wright, S. I. Najafi, J. Mackenzie, and N. Peyghambarian, "Femtosecond pulse propagation near a two-photon transition in a semiconductor quantum-dot waveguide," Opt. Lett. 21, 659-661 (1996).
    [CrossRef] [PubMed]
  13. B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
    [CrossRef]
  14. A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
    [CrossRef]
  15. J. Albert and J. W. Y. Lit, "Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides," Appl. Opt. 29, 2798-2804 (1990).
    [CrossRef] [PubMed]
  16. N. F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, 1999).
  17. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).
  18. K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
    [CrossRef]
  19. J. Viljanen and M. Leppihalme, "Fabrication of optical strip waveguides with nearly circular cross section by silver ion migration technique," J. Appl. Phys. 51, 3563-3565 (1980).
    [CrossRef]
  20. S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
    [CrossRef]
  21. S. Yliniemi, B. R. West, and S. Honkanen, "Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths," Appl. Opt. 44, 3358-3363 (2005).
    [CrossRef] [PubMed]
  22. S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
    [CrossRef]
  23. P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
    [CrossRef]
  24. P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
    [CrossRef]
  25. R. Göring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
    [CrossRef]
  26. K. I. White, "Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles," Opt. Quantum Electron. 11, 185-196 (1979).
    [CrossRef]
  27. C. A. Hill and D. R. Hall, "Coupling loss theory of single-mode waveguide resonators," Appl. Opt. 24, 1283-1290 (1985).
    [CrossRef] [PubMed]
  28. D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).
  29. D. J. Walter and J. Houghton, "Attenuation in thin film optical waveguides due to roughness-induced mode coupling," Thin Solid Films 52, 461-476 (1978).
    [CrossRef]
  30. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).
  31. A. W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  32. A. N. Sloper and M. T. Flanagan, "Scattering in planar surface waveguide immunosensors," Sens. Actuators B 11, 537-542 (1993).
    [CrossRef]
  33. J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

2005 (1)

2004 (2)

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

2003 (1)

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

2000 (2)

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, "Glass doped with PbS quantum dots for passive Q switching of a 1.5-μm laser," Appl. Opt. 39, 4345-4347 (2000).
[CrossRef]

1999 (1)

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

N. F. Borrelli and D. W. Smith, "Quantum confinement of PbS microcrystals in glass," J. Non-Cryst. Solids 180, 25-31 (1994).
[CrossRef]

1993 (1)

A. N. Sloper and M. T. Flanagan, "Scattering in planar surface waveguide immunosensors," Sens. Actuators B 11, 537-542 (1993).
[CrossRef]

1991 (1)

P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
[CrossRef]

1990 (2)

A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
[CrossRef]

J. Albert and J. W. Y. Lit, "Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides," Appl. Opt. 29, 2798-2804 (1990).
[CrossRef] [PubMed]

1988 (1)

E. Hanamura, "Very large optical nonlinearity of semiconductor microcrystallites," Phys. Rev. B 37, 1273-1279 (1988).
[CrossRef]

1987 (3)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
[CrossRef]

1986 (2)

R. Göring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
[CrossRef]

1985 (2)

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

C. A. Hill and D. R. Hall, "Coupling loss theory of single-mode waveguide resonators," Appl. Opt. 24, 1283-1290 (1985).
[CrossRef] [PubMed]

1982 (1)

Al. L. Éfros and A. L. Éfros, "Interband absorption of light in a semiconductor sphere," Sov. Phys. Semicond. 16, 772-775 (1982).

1980 (1)

J. Viljanen and M. Leppihalme, "Fabrication of optical strip waveguides with nearly circular cross section by silver ion migration technique," J. Appl. Phys. 51, 3563-3565 (1980).
[CrossRef]

1979 (1)

K. I. White, "Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles," Opt. Quantum Electron. 11, 185-196 (1979).
[CrossRef]

1978 (1)

D. J. Walter and J. Houghton, "Attenuation in thin film optical waveguides due to roughness-induced mode coupling," Thin Solid Films 52, 461-476 (1978).
[CrossRef]

1969 (1)

D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).

Albert, J.

Auxier, J. M.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

Borrelli, N. F.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

N. F. Borrelli and D. W. Smith, "Quantum confinement of PbS microcrystals in glass," J. Non-Cryst. Solids 180, 25-31 (1994).
[CrossRef]

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

N. F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, 1999).

J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

Chiang, K. S.

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

Cullen, T. J.

T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
[CrossRef]

Denisov, I. A.

Éfros, A. L.

Al. L. Éfros and A. L. Éfros, "Interband absorption of light in a semiconductor sphere," Sov. Phys. Semicond. 16, 772-775 (1982).

Éfros, Al. L.

Al. L. Éfros and A. L. Éfros, "Interband absorption of light in a semiconductor sphere," Sov. Phys. Semicond. 16, 772-775 (1982).

Flanagan, M. T.

A. N. Sloper and M. T. Flanagan, "Scattering in planar surface waveguide immunosensors," Sens. Actuators B 11, 537-542 (1993).
[CrossRef]

Geraghty, D. F.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

Göring, R.

R. Göring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

Guerreiro, P. T.

Hall, D. R.

Hanamura, E.

E. Hanamura, "Very large optical nonlinearity of semiconductor microcrystallites," Phys. Rev. B 37, 1273-1279 (1988).
[CrossRef]

Hill, C. A.

Honkanen, S.

S. Yliniemi, B. R. West, and S. Honkanen, "Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths," Appl. Opt. 44, 3358-3363 (2005).
[CrossRef] [PubMed]

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
[CrossRef]

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

Houghton, J.

D. J. Walter and J. Houghton, "Attenuation in thin film optical waveguides due to roughness-induced mode coupling," Thin Solid Films 52, 461-476 (1978).
[CrossRef]

Hu, Y. Z.

Ironside, C. N.

T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
[CrossRef]

Kang, I.

Kasowski, R.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
[CrossRef]

Lee, S. G.

Leigh, M. A.

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

Leppihalme, M.

S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

J. Viljanen and M. Leppihalme, "Fabrication of optical strip waveguides with nearly circular cross section by silver ion migration technique," J. Appl. Phys. 51, 3563-3565 (1980).
[CrossRef]

Lipovskii, A. A.

Lit, J. W. Y.

Love, J. D.

A. W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Mackenzie, J.

Madasamy, P.

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

Mahler, W.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
[CrossRef]

Malyarevich, A. M.

Marcuse, D.

D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).

Morrell, M. M.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

Najafi, S. I.

Peyghambarian, N.

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

P. T. Guerreiro, S. G. Lee, A. S. Rodrigues, Y. Z. Hu, E. M. Wright, S. I. Najafi, J. Mackenzie, and N. Peyghambarian, "Femtosecond pulse propagation near a two-photon transition in a semiconductor quantum-dot waveguide," Opt. Lett. 21, 659-661 (1996).
[CrossRef] [PubMed]

J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

Polyhonen, P.

P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
[CrossRef]

Pötting, S.

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

Rodrigues, A. S.

Rothhardt, M.

R. Göring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

Salin, A.

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

Savitsky, V. G.

Schülzgen, A.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

Seaton, C. T.

T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
[CrossRef]

Sen, S.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

Sloper, A. N.

A. N. Sloper and M. T. Flanagan, "Scattering in planar surface waveguide immunosensors," Sens. Actuators B 11, 537-542 (1993).
[CrossRef]

Smith, D. W.

N. F. Borrelli and D. W. Smith, "Quantum confinement of PbS microcrystals in glass," J. Non-Cryst. Solids 180, 25-31 (1994).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Stegeman, G. I.

T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
[CrossRef]

Suna, A.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
[CrossRef]

Tahkokorpi, M.

P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
[CrossRef]

Tervonen, A.

P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
[CrossRef]

A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

Viljanen, J.

J. Viljanen and M. Leppihalme, "Fabrication of optical strip waveguides with nearly circular cross section by silver ion migration technique," J. Appl. Phys. 51, 3563-3565 (1980).
[CrossRef]

von Bagh, H.

S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

Walter, D. J.

D. J. Walter and J. Houghton, "Attenuation in thin film optical waveguides due to roughness-induced mode coupling," Thin Solid Films 52, 461-476 (1978).
[CrossRef]

Wang, Y.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
[CrossRef]

West, B. R.

S. Yliniemi, B. R. West, and S. Honkanen, "Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths," Appl. Opt. 44, 3358-3363 (2005).
[CrossRef] [PubMed]

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

White, K. I.

K. I. White, "Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles," Opt. Quantum Electron. 11, 185-196 (1979).
[CrossRef]

Wise, F. W.

Wright, E. M.

Wundke, K.

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

Yliniemi, S.

Yumashev, K. V.

Appl. Opt. (4)

Appl. Phys. Lett. (6)

S. Honkanen, A. Tervonen, H. von Bagh, A. Salin, and M. Leppihalme, "Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates," Appl. Phys. Lett. 51, 296-298 (1987).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, "Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping," Appl. Phys. Lett. 82, 1332-1334 (2003).
[CrossRef]

K. Wundke, S. Pötting, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "PbS quantum-dot-doped glasses for ultrashort-pulse generation," Appl. Phys. Lett. 76, 10-12 (2000).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 μm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999).
[CrossRef]

T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, "Semiconductor-doped glass ion-exchanged waveguides," Appl. Phys. Lett. 49, 1403-1405 (1986).
[CrossRef]

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, S. Sen, N. F. Borrelli, and N. Peyghambarian, "Ion-exchanged waveguides in glass doped with PbS quantum dots," Appl. Phys. Lett. 85, 6098-6100 (2004).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell Syst. Tech. J. 48, 3187-3215 (1969).

Electron. Lett. (1)

P. Polyhonen, S. Honkanen, A. Tervonen, and M. Tahkokorpi, "Planar 1/8 splitter in glass by photoresist masked silver film ion exchange," Electron. Lett. 27, 1319-1320 (1991).
[CrossRef]

J. Appl. Phys. (3)

J. Viljanen and M. Leppihalme, "Fabrication of optical strip waveguides with nearly circular cross section by silver ion migration technique," J. Appl. Phys. 51, 3563-3565 (1980).
[CrossRef]

S. Honkanen, A. Tervonen, H. von Bagh, and M. Leppihalme, "Ion exchange process for fabrication of waveguide couplers for fiber optic sensor applications," J. Appl. Phys. 61, 52-56 (1987).
[CrossRef]

A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
[CrossRef]

J. Chem. Phys. (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, "PbS in polymers. From molecules to bulk solids," J. Chem. Phys. 87, 7315-7322 (1987).
[CrossRef]

J. Lightwave Technol. (1)

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

J. Non-Cryst. Solids (2)

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

N. F. Borrelli and D. W. Smith, "Quantum confinement of PbS microcrystals in glass," J. Non-Cryst. Solids 180, 25-31 (1994).
[CrossRef]

J. Opt. Commun. (1)

R. Göring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

K. I. White, "Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles," Opt. Quantum Electron. 11, 185-196 (1979).
[CrossRef]

Phys. Rev. B (1)

E. Hanamura, "Very large optical nonlinearity of semiconductor microcrystallites," Phys. Rev. B 37, 1273-1279 (1988).
[CrossRef]

Sens. Actuators B (1)

A. N. Sloper and M. T. Flanagan, "Scattering in planar surface waveguide immunosensors," Sens. Actuators B 11, 537-542 (1993).
[CrossRef]

Sov. Phys. Semicond. (1)

Al. L. Éfros and A. L. Éfros, "Interband absorption of light in a semiconductor sphere," Sov. Phys. Semicond. 16, 772-775 (1982).

Thin Solid Films (1)

D. J. Walter and J. Houghton, "Attenuation in thin film optical waveguides due to roughness-induced mode coupling," Thin Solid Films 52, 461-476 (1978).
[CrossRef]

Other (6)

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).

A. W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

J. M. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Luminescence and gain around 1.3 μm in PbS quantum dots," in Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 385-386.

J. M. Auxier, S. Honkanen, M. M. Morrell, M. A. Leigh, S. Sen, N. F. Borrelli, and A. Schülzgen, "Small mode-size waveguides in quantum-dot-doped glasses by Ag-film ion exchange," J. Appl. Phys., to be published.

N. F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, 1999).

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Room-temperature absorption spectra of PbS QD-doped glasses. Solid curves, samples we used to produce waveguides. The mean QD radii R (calculated using the hyperbolic band model) for each sample is listed.

Fig. 2
Fig. 2

Potassium–sodium ion-exchange process. After surface polishing and cleaning, (a) the glass is coated with titanium; (b) the glass is coated with photoresist, patterned, and cured, and the titanium is etched (photolithography process); (c) the glass is placed into a K N O 3 molten salt; and (d) the titanium ion-exchange mask is removed for sample characterization. (c) The K + Na + ion exchange, where potassium ions in the salt replace sodium ions in the glass. This local change of glass chemistry produces the waveguides.

Fig. 3
Fig. 3

Ag-film ion-exchange process. After surface polishing and cleaning, the glass is (a) coated with photoresist, patterned, cured, and (b) coated with silver on both sides; (c) a dc field is applied for ion exchange; and (d) the silver is stripped off, and the glass is annealed. For our ion exchange, we used a field of 250 V mm at 110 ° C and annealed the glass for 2.5 h at 200 ° C .

Fig. 4
Fig. 4

Optical characterization of QD-doped waveguides fabricated using (left column) K + Na + and (right column) Ag-film ion exchange. (a) and (b) RNF index profiles ( 0.8 NA microscope, 633 nm light) from waveguides along with their near-field optical mode profiles ( 0.6 NA microscope objective, 1550 nm light). For reference, we show the mode profile of (e) SMF-28 along with (f) and (g) single-mode waveguides. The index contours have been smoothed and are separated by (a) δ n = 0.0025 and (b) δ n = 0.01 . We measured a 21.4 μ m e 1 width and a 8.7 μ m e 1 height for the mode pictured in (f) and a 7.5 μ m e 1 width at a 5.8 μ m e 1 height for the mode pictured in (g). The calculated coupling losses (with respect to the SMF-28) are γ = 2.2 and γ = 1.4 dB .

Fig. 5
Fig. 5

Fiber–waveguide–objective method for the measurement of losses in optical waveguides. To begin, a calibration is performed. This consists of (f-o) fiber–objective and (f-f) fiber–fiber transmission (power) measurements. The first two waveguide measurements are ( f - w - o 1 ) fiber–waveguide–objective and ( f - w - f 1 ) fiber–waveguide–fiber transmission measurements. ( f - w - o 2 ) and ( f - w - f 2 ) The two transmission measurements in ( f - w - f 2 ) and ( f - w - f 1 ) are repeated with the sample turned around. Measurements ( f - w - o 1 ) and ( f - w - o 2 ) are normalized to measurement (f-o); measurements ( f - w - f 1 ) and ( f - w - f 2 ) are normalized to measurement (f-f). We used Corning SMF-28 fibers and a 0.6 NA microscope objective for these measurements.

Fig. 6
Fig. 6

Three collection setups used to collect luminescence from waveguides in PbS QD-doped glass. These used (a) an integrating sphere, (b) a multimode fiber ( 100 μ m core and a 140 μ m cladding), and (c) a 0.45 NA microscope objective. In all three cases, the pump laser beam was coupled into the waveguide by using a 0.45 NA microscope objective, and the collected light was analyzed using a grating spectrometer. In the case of (a), we used the multimode fiber to collect light from an output port of the integrating sphere. In the case of (b), the multimode fiber collected PL emitted from the waveguide coming out the top of the sample.

Fig. 7
Fig. 7

Luminescence from K + Na + ion-exchange waveguides in PbS QD-doped glasses with QD-absorption spectra shown in Fig. 1 with QD sizes of (1) R = 2.2 nm , (2) R = 2.7 nm , and (3) R = 3.2 nm . In each of these figures, we show the bulk-glass PL spectra (a) before and (b) after K + Na + ion exchange. The luminescence collected from a waveguide is shown in spectrum (c) along with spectrum (d), the QD absorption for comparison. The pump wavelength was 1064 nm .

Fig. 8
Fig. 8

Luminescence from Ag-film ion-exchange waveguides in PbS QD-doped glasses with QD-absorption spectra shown in Fig. 1 with QD sizes of (1) R = 2.2 nm and (2) R = 3.2 nm . In both these figures, we show the bulk-glass PL spectra (a) before and (b) after Ag-film ion exchange. The luminescence collected from a waveguide is shown in spectrum (c) along with spectrum (d), the QD absorption for comparison. The pump wavelength was 1064 nm .

Tables (2)

Tables Icon

Table 1 Average Propagation, Guide (QD Absorption Removed), Coupling, and Ideal Coupling Losses [Overlap Integral Using Eq. (14)] in QD-Doped Waveguides Made Using Ag-Film Ion Exchange a

Tables Icon

Table 2 Average Propagation, Guide (QD Absorption Removed), Coupling, and Ideal Coupling Losses [Overlap Integrals Using Eq. (14)] in QD-Doped Waveguides Made Using K + Na + Ion Exchange a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( ω 1 s ) 2 = ( h c λ 1 s ) 2 = E g 2 + 2 2 E g m * ( π R ) 2 ,
C Ag t = D Ag 1 ( 1 M ) C Ag [ 2 C Ag + ( 1 M ) ( C Ag ) 2 1 ( 1 M ) C Ag q E ext C Ag k T ] .
n ( x , y , λ ) = n sub ( λ ) + Δ n max ( λ ) C Ag ( x , y ) ,
n 2 ( x , y ) = sin 2 θ in + n ref 2 + sin 2 θ out ,
Δ d = 1.22 λ f # = 1.22 λ 2 NA .
T fwo 1 = P fwo 1 P fo ,
T fwo 2 = P fwo 2 P fo ,
T fwf 1 = P fwf 1 P ff ,
T fwf 2 = P fwf 2 P ff .
L side 1 = T fwo 1 T fwf 1 ,
L side 2 = T fwo 2 T fwf 2 ,
L prop = T fwf 1 L side 2 = T fwf 2 L side 1 ,
L err = T fwf 1 T fwf 2 ,
η = + + I 1 ( x , y ) I 2 ( x , y ) d x d y 2 ,
+ + I i ( x , y ) d x d y = 1 ,

Metrics