Abstract

The role of a strong dye absorption in determining the photonic bandgap (PBG) shape of a three-dimensional dyed photonic crystal, fabricated from dyed polystyrene nanospheres, is investigated. When the dye absorption peaks fall on the PBG spectral position, the PBG has a distorted shape, narrow top, and wide bottom. Theoretical analysis shows that the characteristic PBG shape results from two superimposed contributions with distinct origins, i.e., a Bragg reflection and a high reflection associated with the strong dye absorption.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).
  2. M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
    [CrossRef]
  3. J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, "Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal," Opt. Lett. 29, 2644-2646 (2004).
    [CrossRef] [PubMed]
  4. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  5. S.-Y. Lin, J. G. Fleming, and I. El-Kady, "Three-dimensional photonic-crystal emission through thermal excitation," Opt. Lett. 28, 1909-1911 (2003).
    [CrossRef] [PubMed]
  6. S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
    [CrossRef]
  7. P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
    [CrossRef]
  8. H. Takeda and K. Yoshino, "Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells," Appl. Phys. Lett. 80, 4495-4497 (2002).
    [CrossRef]
  9. H. Takeda and K. Yoshino, "Photonic band structures for three-dimensionally periodic arrays of coated spheres," J. Appl. Phys. 93, 3188-3193 (2003).
    [CrossRef]
  10. N. Y. Ha, J. W. Wu, and B. Park, "Fabrication and optical characterization of 3-D polystyrene colloidal photonic crystal," J. Korean Phys. Soc. 45, 108-111 (2004).
  11. V. Kuzmiak and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427-7444 (1997).
    [CrossRef]
  12. B. E. A. Saleh and M. C. Teich, "Electromagnetic optics," in Fundamentals of Photonics (Wiley, 1991), pp. 157-191.
    [CrossRef]
  13. I. I. Tarhan and G. H. Watson, "Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation," Phys. Rev. B 54, 7593-7597 (1996).
    [CrossRef]
  14. D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
    [CrossRef]
  15. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
    [CrossRef]
  16. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
    [CrossRef]

2004 (3)

N. Y. Ha, J. W. Wu, and B. Park, "Fabrication and optical characterization of 3-D polystyrene colloidal photonic crystal," J. Korean Phys. Soc. 45, 108-111 (2004).

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, "Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal," Opt. Lett. 29, 2644-2646 (2004).
[CrossRef] [PubMed]

2003 (3)

S.-Y. Lin, J. G. Fleming, and I. El-Kady, "Three-dimensional photonic-crystal emission through thermal excitation," Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).

H. Takeda and K. Yoshino, "Photonic band structures for three-dimensionally periodic arrays of coated spheres," J. Appl. Phys. 93, 3188-3193 (2003).
[CrossRef]

2002 (3)

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

H. Takeda and K. Yoshino, "Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells," Appl. Phys. Lett. 80, 4495-4497 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

2000 (1)

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

1999 (2)

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

1997 (1)

V. Kuzmiak and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427-7444 (1997).
[CrossRef]

1996 (1)

I. I. Tarhan and G. H. Watson, "Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation," Phys. Rev. B 54, 7593-7597 (1996).
[CrossRef]

1993 (1)

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
[CrossRef]

Astratov, V. N.

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Baryshev, A. V.

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Bertone, J. F.

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Chan, C. T.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
[CrossRef]

Chang, H. J.

Colvin, V. L.

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

Datta, S.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
[CrossRef]

DiDomenico, D.

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

Dionigi, C.

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

El-Kady, I.

S.-Y. Lin, J. G. Fleming, and I. El-Kady, "Three-dimensional photonic-crystal emission through thermal excitation," Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Fleming, J. G.

S.-Y. Lin, J. G. Fleming, and I. El-Kady, "Three-dimensional photonic-crystal emission through thermal excitation," Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Gates, B.

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Ha, N. Y.

N. Y. Ha, J. W. Wu, and B. Park, "Fabrication and optical characterization of 3-D polystyrene colloidal photonic crystal," J. Korean Phys. Soc. 45, 108-111 (2004).

J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, "Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal," Opt. Lett. 29, 2644-2646 (2004).
[CrossRef] [PubMed]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
[CrossRef]

Hoshi, H.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Hwang, J.

Hwang, K. S.

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

Ishikawa, K.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Jiang, P.

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

Joannopoulos, J. D.

E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).

Johnson, S. G.

E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).

Kaplyanskii, A. A.

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Karimov, O. Z.

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Kuzmiak, V.

V. Kuzmiak and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427-7444 (1997).
[CrossRef]

Limonov, M. F.

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Lin, S.-Y.

Losurdo, M.

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

Maradudin, A. A.

V. Kuzmiak and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427-7444 (1997).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

Muccini, M.

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

Nishimura, S.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Nozar, P.

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

Ohta, T.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Park, B.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, "Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal," Opt. Lett. 29, 2644-2646 (2004).
[CrossRef] [PubMed]

N. Y. Ha, J. W. Wu, and B. Park, "Fabrication and optical characterization of 3-D polystyrene colloidal photonic crystal," J. Korean Phys. Soc. 45, 108-111 (2004).

Park, S. H.

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Povinelli, M. L.

E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).

Ridorikis, E.

E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, "Electromagnetic optics," in Fundamentals of Photonics (Wiley, 1991), pp. 157-191.
[CrossRef]

Shin, K.-C.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Song, M. H.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Soukoulis, C. M.

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
[CrossRef]

Swager, T. M.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Takanishi, Y.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Takeda, H.

H. Takeda and K. Yoshino, "Photonic band structures for three-dimensionally periodic arrays of coated spheres," J. Appl. Phys. 93, 3188-3193 (2003).
[CrossRef]

H. Takeda and K. Yoshino, "Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells," Appl. Phys. Lett. 80, 4495-4497 (2002).
[CrossRef]

Takezoe, H.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Taliani, C.

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

Tarhan, I. I.

I. I. Tarhan and G. H. Watson, "Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation," Phys. Rev. B 54, 7593-7597 (1996).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, "Electromagnetic optics," in Fundamentals of Photonics (Wiley, 1991), pp. 157-191.
[CrossRef]

Toyooka, T.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Tsunoda, Y.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Watanabe, J.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Watson, G. H.

I. I. Tarhan and G. H. Watson, "Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation," Phys. Rev. B 54, 7593-7597 (1996).
[CrossRef]

Wu, J. W.

N. Y. Ha, J. W. Wu, and B. Park, "Fabrication and optical characterization of 3-D polystyrene colloidal photonic crystal," J. Korean Phys. Soc. 45, 108-111 (2004).

J. Hwang, N. Y. Ha, H. J. Chang, B. Park, and J. W. Wu, "Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal," Opt. Lett. 29, 2644-2646 (2004).
[CrossRef] [PubMed]

Xia, Y.

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

Yoshino, K.

H. Takeda and K. Yoshino, "Photonic band structures for three-dimensionally periodic arrays of coated spheres," J. Appl. Phys. 93, 3188-3193 (2003).
[CrossRef]

H. Takeda and K. Yoshino, "Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells," Appl. Phys. Lett. 80, 4495-4497 (2002).
[CrossRef]

Zhu, Z.

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Adv. Mater. (3)

S. H. Park, B. Gates, and Y. Xia, "A three-dimensional photonic crystal operating in the visible region," Adv. Mater. 11, 462-466 (1999).
[CrossRef]

P. Nozar, D. DiDomenico, C. Dionigi, M. Losurdo, M. Muccini, and C. Taliani, "Observation of multiple stop bands in photonic bandgap structures doped with organic dyes," Adv. Mater. 14, 1023-1027 (2002).
[CrossRef]

M. H. Song, B. Park, K.-C. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, "Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals," Adv. Mater. 16, 779-783 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

H. Takeda and K. Yoshino, "Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells," Appl. Phys. Lett. 80, 4495-4497 (2002).
[CrossRef]

J. Appl. Phys. (1)

H. Takeda and K. Yoshino, "Photonic band structures for three-dimensionally periodic arrays of coated spheres," J. Appl. Phys. 93, 3188-3193 (2003).
[CrossRef]

J. Chem. Phys. (1)

D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, "Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation," J. Chem. Phys. 111, 345-354 (1999).
[CrossRef]

J. Korean Phys. Soc. (1)

N. Y. Ha, J. W. Wu, and B. Park, "Fabrication and optical characterization of 3-D polystyrene colloidal photonic crystal," J. Korean Phys. Soc. 45, 108-111 (2004).

Nature (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, andK. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (3)

I. I. Tarhan and G. H. Watson, "Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation," Phys. Rev. B 54, 7593-7597 (1996).
[CrossRef]

V. Kuzmiak and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427-7444 (1997).
[CrossRef]

S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Phys. Rev. B 48, 14936-14943 (1993).
[CrossRef]

Phys. Rev. E (1)

Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

E. Ridorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 02390211-02390214 (2003).

Other (1)

B. E. A. Saleh and M. C. Teich, "Electromagnetic optics," in Fundamentals of Photonics (Wiley, 1991), pp. 157-191.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transmission spectra T of a 0.04 wt. - % solution of Oil Blue N in ethanol (solid curve) and a diluted aqueous dispersion of 239 nm dyed-polystyrene nanospheres (dashed curve). (b) The absorption spectra ln ( T ) of the diluted aqueous dispersion converted from the dashed curve in (a) (dashed curve), the absorption spectra corrected with the Rayleigh scattering (black solid curve), and the theoretical fit curve created by introducing three Lorentzian oscillators (gray solid curve). Inset, the structure of the nanosphere, composed of an inner core and an outer shell. (c) The dispersion relation of the complex refractive index of the outer shell of the organic dye Oil Blue N as determined from the theoretical fit in (b) and the Kramers–Kroning relation. The real part ( n ) and imaginary part ( k ) of the refractive index are displayed by the solid and dashed curves, respectively.

Fig. 2
Fig. 2

(a) Reflection spectra of the 230 nm -diameter 3D bare PC as a reference. (b) Reflection and (c) transmission spectra of the 239 nm diameter 3D dyed PC. The least-squares fit is shown by a gray curve, along with the experimental measurement (black curve).

Fig. 3
Fig. 3

(a) Simulated reflection spectra of 3D dyed (black curve) and bare (gray curve) PCs with the same sphere diameter D = 247.1 nm and the number of layers N = 45 . (b) Theoretical reflection (black curve) and transmission (gray curve) spectra of the 3D dyed PC ( D = 200 nm , N = 45 ) when the Bragg reflection peak did not overlap with the absorption peaks of the dye. (c) The outer shell thickness, R s 2 R s 1 , containing the organic dye Oil Blue N, dependence of the reflection spectrum for the 3D dyed PC.

Fig. 4
Fig. 4

Simulated reflection spectra of the [111]-oriented (gray curve) and the [100]-oriented (black curve) 3D dyed PCs. Inset, in the fcc lattice, the [111] direction perpendicular to the substrate of the fabricated sample and the [100] direction making the angle 54.7° relative to the [111] direction are indicated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϵ 0 = ( f f shell ) ϵ s 1 + f shell ϵ s 2 + ( 1 f ) ϵ void .
ϵ ( r ) = ( ϵ s 1 ϵ void ) R θ 1 ( r R ) + ( ϵ s 2 ϵ void ) R θ 2 ( r R ) ,

Metrics