Abstract

The performance of a thermo-optic switch based on a photonic crystal fiber (PCF) infiltrated with a liquid crystal is investigated numerically for various fiber designs. Operation near a long-wavelength bandgap edge is found to yield superior results for the thermal sensitivity compared with the calculated coupling loss between filled and nonfilled fiber sections. By varying the relative hole size of the PCF, comparable performance can in this case be obtained over a large range of core sizes, thus facilitating the matching of the device to other waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
    [CrossRef]
  2. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  3. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  4. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  5. J. Li, S. Gauzia, and S.-T. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express 12, 2002-2010 (2004).
    [CrossRef] [PubMed]
  6. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
    [CrossRef]
  7. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
    [CrossRef]
  8. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
    [CrossRef]
  9. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  10. M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
    [CrossRef]
  11. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
    [CrossRef] [PubMed]
  12. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004).
    [CrossRef]
  13. A. Michie, J. Canning, K. Lyytikäinen, M. Aaslund, and J. Digweed, "Temperature independent highly birefringent photonic crystal fibre," Opt. Express 12, 5160-5165 (2004).
    [CrossRef] [PubMed]

2004 (6)

2003 (2)

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

2001 (1)

1997 (1)

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

1993 (1)

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Aaslund, M.

Albertsen, M.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

Alerhand, O. L.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Alkeskjold, T. T.

Anawati, A.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

Bjarklev, A.

Broeng, J.

Brommer, K. D.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Canning, J.

de Sterke, C. M.

Digweed, J.

Eggleton, B. J.

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
[CrossRef] [PubMed]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

Gauzia, S.

Hermann, D. S.

Hougaard, K.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Johnson, S. G.

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

Kuhlmey, B. T.

Lægsgaard, J.

J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

Larsen, T. T.

Li, J.

Libori, S. E. B.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

Lyytikäinen, K.

Meade, R. D.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Michie, A.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Rappe, A. M.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Riishede, J.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

Steel, M. J.

Steinvurzel, P.

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

White, T. P.

Windeler, R. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

Wu, S.

Wu, S. T.

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

Wu, S.-T.

J. Appl. Phys. (1)

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004).
[CrossRef]

Opt. Express (6)

Photonics Nanostruct. Fundam. Appl. (1)

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. Fundam. Appl. 1, 43-54 (2003).
[CrossRef]

Phys. Rev. B (2)

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

Other (2)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band-gap fibre," in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThK3.
[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the device discussed in this paper. A PCF having a UV-induced Bragg grating in its core is LC infiltrated so that the LC overlaps the Bragg grating. (b) The generic PCF design used for the device in the left panel. Black circles represent the (LC-infiltrated) airholes. The structural parameters Λ and d are shown.

Fig. 2
Fig. 2

(Color online) Transmission spectrum for the two first transmission bands in a LC-infiltrated PCF having d Λ = 0.4 , Λ = 3.8 μ m , and T = 25 ° C . Insets show field energy distributions of guided modes in the transmission bands, and cladding modes with n eff close to n Si O 2 in the stopbands.

Fig. 3
Fig. 3

Left column shows transmission spectra at the band edge for fiber designs utilizing the band edges (a) SW1, (b) LW1, and (c) SW2 for switching in the telecom window. The temperature is 25 ° C for (a) and (c) and 27.5 ° C for (b). In (d), (e), and (f) the corresponding wavelength shift when going from T = 25 ° C to T = 27.5 ° C or vice versa are shown.

Fig. 4
Fig. 4

Wavelength shift as a function of calculated device loss for the (a) SW1, (b) LW1, and (c) SW2 fiber designs. In (d), the connection between wavelength shift and the difference in loss between the two states at T = 25 ° C and T = 27.5 ° C is illustrated for the LW1 fibers.

Fig. 5
Fig. 5

Field energy fraction in the liquid crystal as a function of the calculated device loss for the fibers with d Λ = 0.4 .

Fig. 6
Fig. 6

Mode profiles at a device loss of 1.5 dB , for the LW1 edge (top), the SW2 edge (bottom), and the fiber with air-filled holes (middle).

Fig. 7
Fig. 7

Wavelength shifts versus wavelength at T = 25 ° C for a single LC-filled capillary of diameter d. The single-mode cutoffs for the three diameters investigated are 1.673 μ m ( d = 2.0 μ m ) , 1.453 μ m ( d = 1.75 μ m ) , and 1.241 μ m ( d = 1.5 μ m ) .

Tables (1)

Tables Icon

Table 1 Parameters for the Cauchy and Sellmeier Polynomials Used to Parametrize the Material Dispersion of LC and Silica

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n Si O 2 = ( 1 + i = 1 3 a i λ 2 λ 2 b i ) 1 2 .
n e , o = A 1 e , o + A 2 e , o λ 2 + A 3 e , o λ 4 ,
P out P in = 2 d r H LC * H air d r H LC 2 d r H air 2 .
E LC = LC E D d r E D d r ,

Metrics