Abstract

We report on what we believe is the first demonstration of an optically activated cantilever due to photomechanical effects in a dye-doped polymer optical fiber. The fiber is observed to bend when light is launched off-axis. The displacement angle monotonically increases as a function of the distance between the illumination point and the fiber axis and is consistent with differential light-induced length changes. The photothermal and photoreorientation mechanisms, each with its own distinct response time, are proposed to explain the observed time dependence. The measured degree of bending is consistent with a model that we have proposed that includes coupling of photoisomerization and heating. Most importantly, we have discovered that at high light intensity, a cooperative release of stress results in cis-to-trans isomerization that yields a large and abrupt length change.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Merian, "Steric factors influencing the dyeing of hydrophobic fibers," Text. Res. J. 36, 612-618 (1966).
    [CrossRef]
  2. C. D. Eisenbach, "Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect," Polymer 21, 1175-1179 (1966).
    [CrossRef]
  3. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
    [CrossRef] [PubMed]
  4. M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
    [CrossRef]
  5. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
    [CrossRef] [PubMed]
  6. P. G. de Gennes, "Réflexions sur un type de polymères nématiques," C. R. Seances Acad. Sci., Ser. B 281, 101-103 (1975).
  7. D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization and semi-digital positioning in a polymer fiber-based all-optical circuit," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1308-1312.
  8. S. Zhou and M. G. Kuzyk, "Observation of fast photomechanical effects in a polymer optical fiber," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1375-1380.
  9. D. J. Welker and M. G. Kuzyk, "All-optical devices in polymer optical fiber," Nonlinear Opt. 15, 435-442 (1996).
  10. D. J. Welker and M. G. Kuzyk, "All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 69, 1835-1836 (1996).
    [CrossRef]
  11. D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization in a polymer fiber-based all-optical circuit," Appl. Phys. Lett. 64, 809-811 (1994).
    [CrossRef]
  12. D. J. Welker and M. G. Kuzyk, "Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device," Opt. Lett. 22, 417-418 (1997).
    [CrossRef] [PubMed]
  13. D. J. Welker and M. G. Kuzyk, "Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 66, 2792-2794 (1995).
    [CrossRef]
  14. S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
    [CrossRef]
  15. M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).
  16. Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
    [CrossRef]
  17. T. Todorov, L. Nikolova, and N. Tomova, "Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence," Appl. Opt. 23, 4309-4312 (1984).
    [CrossRef] [PubMed]
  18. Z. Sekkat, G. Kleideiter, and W. Knoll, "Optical orientation of azo dye in polymer films at high pressure," J. Opt. Soc. Am. B 18, 1854-1857 (2001).
    [CrossRef]
  19. J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley-Interscience, 1989).
  20. C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
    [CrossRef]
  21. M. Warner and L. Mahadevan, "Photoinduced deformations of beams, plates, and films," Phys. Rev. Lett. 92, 134302 (2004).
    [CrossRef] [PubMed]
  22. A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
    [CrossRef] [PubMed]
  23. Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light: miniaturizing a simple photomechanical system could expand its range of applications," Nature 425, 145 (2003).
    [CrossRef] [PubMed]
  24. A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
    [CrossRef]
  25. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

2005 (3)

A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
[CrossRef] [PubMed]

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

2004 (2)

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
[CrossRef] [PubMed]

M. Warner and L. Mahadevan, "Photoinduced deformations of beams, plates, and films," Phys. Rev. Lett. 92, 134302 (2004).
[CrossRef] [PubMed]

2003 (2)

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light: miniaturizing a simple photomechanical system could expand its range of applications," Nature 425, 145 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

2001 (2)

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Z. Sekkat, G. Kleideiter, and W. Knoll, "Optical orientation of azo dye in polymer films at high pressure," J. Opt. Soc. Am. B 18, 1854-1857 (2001).
[CrossRef]

1997 (1)

1996 (2)

D. J. Welker and M. G. Kuzyk, "All-optical devices in polymer optical fiber," Nonlinear Opt. 15, 435-442 (1996).

D. J. Welker and M. G. Kuzyk, "All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 69, 1835-1836 (1996).
[CrossRef]

1995 (1)

D. J. Welker and M. G. Kuzyk, "Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 66, 2792-2794 (1995).
[CrossRef]

1994 (1)

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization in a polymer fiber-based all-optical circuit," Appl. Phys. Lett. 64, 809-811 (1994).
[CrossRef]

1993 (1)

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

1992 (1)

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

1984 (1)

1975 (1)

P. G. de Gennes, "Réflexions sur un type de polymères nématiques," C. R. Seances Acad. Sci., Ser. B 281, 101-103 (1975).

1966 (2)

E. Merian, "Steric factors influencing the dyeing of hydrophobic fibers," Text. Res. J. 36, 612-618 (1966).
[CrossRef]

C. D. Eisenbach, "Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect," Polymer 21, 1175-1179 (1966).
[CrossRef]

Athanassiou, A.

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

Bian, S.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Brandrup, J.

J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley-Interscience, 1989).

Bruner, M.

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Camacho-Lopez, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
[CrossRef] [PubMed]

Canfield, B. K.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes, "Réflexions sur un type de polymères nématiques," C. R. Seances Acad. Sci., Ser. B 281, 101-103 (1975).

Delaire, J. A.

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Ding, J-.L.

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

Dumont, M.

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Eisenbach, C. D.

C. D. Eisenbach, "Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect," Polymer 21, 1175-1179 (1966).
[CrossRef]

Embaye, N. B.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Endo, T.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Finkelmann, H.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Fotakis, C.

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

Fujii, M.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Fujita, Y.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Georgiou, S.

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

Hanna, G. J.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Ikeda, T.

Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light: miniaturizing a simple photomechanical system could expand its range of applications," Nature 425, 145 (2003).
[CrossRef] [PubMed]

Immergut, E. H.

J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley-Interscience, 1989).

Jiang, C.

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

Jiang, H.

A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
[CrossRef] [PubMed]

John, W. E.

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

Jünger, O.

A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
[CrossRef] [PubMed]

Kalyva, M.

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

Keller, P.

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Kim, H. K.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Kim, S. I.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Kleideiter, G.

Knoll, W.

Kuzyk, M. G.

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device," Opt. Lett. 22, 417-418 (1997).
[CrossRef] [PubMed]

D. J. Welker and M. G. Kuzyk, "All-optical devices in polymer optical fiber," Nonlinear Opt. 15, 435-442 (1996).

D. J. Welker and M. G. Kuzyk, "All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 69, 1835-1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 66, 2792-2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization in a polymer fiber-based all-optical circuit," Appl. Phys. Lett. 64, 809-811 (1994).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization and semi-digital positioning in a polymer fiber-based all-optical circuit," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1308-1312.

S. Zhou and M. G. Kuzyk, "Observation of fast photomechanical effects in a polymer optical fiber," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1375-1380.

Lakiotaki, K.

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

Langer, R.

A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
[CrossRef] [PubMed]

Lendlein, A.

A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
[CrossRef] [PubMed]

Li, B.

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Li, M. H.

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Loucif-Saïbi, R.

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Loucif-Säibi, R.

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

Mahadevan, L.

M. Warner and L. Mahadevan, "Photoinduced deformations of beams, plates, and films," Phys. Rev. Lett. 92, 134302 (2004).
[CrossRef] [PubMed]

Merian, E.

E. Merian, "Steric factors influencing the dyeing of hydrophobic fibers," Text. Res. J. 36, 612-618 (1966).
[CrossRef]

Morichère, D.

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Nakano, M.

Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light: miniaturizing a simple photomechanical system could expand its range of applications," Nature 425, 145 (2003).
[CrossRef] [PubMed]

Nakatani, K.

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

Nikolova, L.

Nishida, H.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Nishikawa, E.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Palffy-Muhoray, P.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
[CrossRef] [PubMed]

Park, J. J.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Pereira, G. G.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Sekkat, Z.

Z. Sekkat, G. Kleideiter, and W. Knoll, "Optical orientation of azo dye in polymer films at high pressure," J. Opt. Soc. Am. B 18, 1854-1857 (2001).
[CrossRef]

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Shelley, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
[CrossRef] [PubMed]

Sudo, A.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Todorov, T.

Tomova, N.

Wang, X. G.

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Wang, X. S.

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Warner, M.

M. Warner and L. Mahadevan, "Photoinduced deformations of beams, plates, and films," Phys. Rev. Lett. 92, 134302 (2004).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Welker, D. J.

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Suppressing vibrations in a sheet with a Fabry-Perot photomechanical device," Opt. Lett. 22, 417-418 (1997).
[CrossRef] [PubMed]

D. J. Welker and M. G. Kuzyk, "All-optical devices in polymer optical fiber," Nonlinear Opt. 15, 435-442 (1996).

D. J. Welker and M. G. Kuzyk, "All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 69, 1835-1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 66, 2792-2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization in a polymer fiber-based all-optical circuit," Appl. Phys. Lett. 64, 809-811 (1994).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization and semi-digital positioning in a polymer fiber-based all-optical circuit," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1308-1312.

Yu, Y.

Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light: miniaturizing a simple photomechanical system could expand its range of applications," Nature 425, 145 (2003).
[CrossRef] [PubMed]

Zhang, W.

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Zhou, S.

S. Zhou and M. G. Kuzyk, "Observation of fast photomechanical effects in a polymer optical fiber," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1375-1380.

Adv. Mater. (Weinheim, Ger.) (1)

M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Bruner, "Light-driven side-on nematic elastomer actuators," Adv. Mater. (Weinheim, Ger.) 15, 569-572 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. J. Welker and M. G. Kuzyk, "All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 69, 1835-1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization in a polymer fiber-based all-optical circuit," Appl. Phys. Lett. 64, 809-811 (1994).
[CrossRef]

D. J. Welker and M. G. Kuzyk, "Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide," Appl. Phys. Lett. 66, 2792-2794 (1995).
[CrossRef]

Appl. Surf. Sci. (1)

A. Athanassiou, K. Lakiotaki, M. Kalyva, S. Georgiou, and C. Fotakis, "Photoswitches operating upon ns pulsed laser irradiation," Appl. Surf. Sci. 248, 56-61 (2005).
[CrossRef]

C. R. Seances Acad. Sci., Ser. B (1)

P. G. de Gennes, "Réflexions sur un type de polymères nématiques," C. R. Seances Acad. Sci., Ser. B 281, 101-103 (1975).

J. Appl. Phys. (3)

S. Bian, W. Zhang, S. I. Kim, N. B. Embaye, G. J. Hanna,J. J. Park, B. K. Canfield, and M. G. Kuzyk, "High-efficiency optical phase conjugation by degenerate four-wave mixing in volume media of disperse red 1-doped poly(methyl methacrylate)," J. Appl. Phys. 92, 4186-4193 (2002).
[CrossRef]

Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

C. Jiang, M. G. Kuzyk, J-.L. Ding, W. E. John, and D. J. Welker, "Fabrication and mechanical behavior of dye-doped polymer optical fiber," J. Appl. Phys. 92, 4-12 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Chem. (1)

H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate," Mater. Chem. 26, 1032-1036 (2005).

Nat. Mater. (1)

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid-crystal elastomer swims into the dark," Nat. Mater. 3, 307-310 (2004).
[CrossRef] [PubMed]

Nature (2)

A. Lendlein, H. Jiang, O. Jünger, and R. Langer, "Light-induced shape-memory polymers," Nature 434, 879-882 (2005).
[CrossRef] [PubMed]

Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light: miniaturizing a simple photomechanical system could expand its range of applications," Nature 425, 145 (2003).
[CrossRef] [PubMed]

Nonlinear Opt. (2)

D. J. Welker and M. G. Kuzyk, "All-optical devices in polymer optical fiber," Nonlinear Opt. 15, 435-442 (1996).

M. Dumont, Z. Sekkat, R. Loucif-Säibi, K. Nakatani, and J. A. Delaire, "Photoisomerization, photoinduced orientation and orientational relaxation of azo-dyes in polymeric films," Nonlinear Opt. 5, 395-406 (1993).

Opt. Lett. (1)

Phys. Rev. Lett. (2)

M. Warner and L. Mahadevan, "Photoinduced deformations of beams, plates, and films," Phys. Rev. Lett. 92, 134302 (2004).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, "A new opto-mechanical effect in solids," Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Polymer (1)

C. D. Eisenbach, "Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect," Polymer 21, 1175-1179 (1966).
[CrossRef]

Text. Res. J. (1)

E. Merian, "Steric factors influencing the dyeing of hydrophobic fibers," Text. Res. J. 36, 612-618 (1966).
[CrossRef]

Other (3)

D. J. Welker and M. G. Kuzyk, "Photomechanical stabilization and semi-digital positioning in a polymer fiber-based all-optical circuit," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1308-1312.

S. Zhou and M. G. Kuzyk, "Observation of fast photomechanical effects in a polymer optical fiber," in Proceedings of the Second International Conference on Intelligent Materials (Technomic, 1994), pp. 1375-1380.

J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley-Interscience, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Photograph of an MPU (a) without illumination and (b) with illumination. The three arrows mark reference positions for identifying changes of the fiber position. The white arrow indicates the position of the excitation beam.

Fig. 2
Fig. 2

Measured degree of fiber bending as a function of the position of the pump laser, measured from the fiber axis. The inset shows the fiber end and pump beam, approximately to scale.

Fig. 3
Fig. 3

Schematic diagram of the relationship between the length change and the degree of bending.

Fig. 4
Fig. 4

Schematic diagram of the experiment used to measure bending of the MPU in response to light excitation. VA, variable attenuator; M, mirror; L, lens; and CL, cylindrical lens.

Fig. 5
Fig. 5

Schematic diagram showing how a length change or a bending of an MPU affects the measured power at the detector.

Fig. 6
Fig. 6

Voltage measured at the detector as a function of the mirror deflection angle. The calibration curve is determined from a polynomial fit.

Fig. 7
Fig. 7

Degree of bending of an MPU cantilever as a function of time with a pump laser repeatedly turned on and off.

Fig. 8
Fig. 8

Deflection angle of the probe laser (circles) as a function of time after the shutter is opened. The gray curve is a fit to Eq. (20).

Fig. 9
Fig. 9

Deflection angle of the probe laser (circles) as a function of time after the shutter is closed. The gray curve is a fit to Eq. (21).

Fig. 10
Fig. 10

Equilibrium deflection angle of the MPU as a function of pump power.

Fig. 11
Fig. 11

Time constants for the (a) fast and (b) slow processes as a function of pump power obtained after the pump is turned on. Each point in the plot is determined from data fits similar to Fig. 8.

Fig. 12
Fig. 12

Time constants for the (a) fast and (b) slow processes as a function of pump power obtained after the pump pulse is turned off. Each point in the plot is determined from data fits similar to Fig. 9.

Fig. 13
Fig. 13

Fast components of the amplitude of the deflection angle as a function pump power obtained from (a) rise and (b) decay data. The open circles indicate the ratio of these two components.

Fig. 14
Fig. 14

Slow component of the amplitude of the deflection angle as a function pump power obtained from (a) rise and (b) decay data.

Fig. 15
Fig. 15

Each frame shows a microscopic view of those molecules that are affected most by the light (i.e., we ignore those molecules that are not along the light’s polarization) and a macroscopic view of the fiber at a given applied field due to a light beam. The dashed lines show the original shape of the material or fiber, and the solid line shows the instantaneous shape. Note that E 1 < E 2 < E 3 .

Fig. 16
Fig. 16

Process of trans-cis-trans molecular reorientation in a void that is large enough to easily accommodate the new orientation.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

d N d t = ξ I N + β ( 1 2 N ) ,
N = 2 β + ξ I exp [ ( 2 β + ξ I ) t ] 2 ( 2 β + ξ I ) ,
N = 1 2 [ 1 ξ I ( 2 β + ξ I ) ( 1 exp [ ( 2 β + ξ I ) t ] ) ] .
N eq = β 2 β + ξ I ,
δ ( I ) = 2 β + ξ I .
N = 1 2 1 2 ( 1 2 N eq ) exp ( 2 β t ) = 1 2 1 2 [ ξ I 2 β + ξ I ] exp ( 2 β t ) ,
d T d t = γ ( T T 0 ) + α N I ,
d T d t = γ ( T T 0 ) .
d T d t + γ ( T T 0 ) = α I 2 { 1 ( δ 2 β ) δ [ 1 exp ( δ t ) ] } .
T T 0 = A exp ( γ t ) + α β I δ γ + α I 2 ( γ δ ) ( δ 2 β ) δ exp ( δ t ) ,
A = α β I δ γ α I 2 ( γ δ ) ( δ 2 β ) δ = α I ( γ 2 β ) 2 γ ( γ δ ) .
T T 0 = α I 2 ( γ δ ) { ( γ 2 β γ ) [ 1 exp ( γ t ) ] ( δ 2 β δ ) [ 1 exp ( δ t ) ] } .
T T 0 = B exp ( γ t ) ,
T T 0 = α β δ γ I = B ,
T T 0 = α β δ γ I exp ( γ t ) .
Δ L L = b [ ( 1 N ) N ] = b ( 1 2 N ) ,
Δ L L = b ( 1 2 N ) + α t ( T T 0 ) .
θ = L + Δ L R + d = L R θ = L d Δ L L = ϵ Δ L L ,
θ r = ϵ α t α I ( γ 2 β ) 2 γ ( γ δ ) [ 1 exp ( γ t ) ] + ϵ ( δ 2 β ) δ [ b α t α I 2 ( γ δ ) ] [ 1 exp ( δ t ) ] .
b < 0 .
β = 1 2 τ s d = 1 2 × 2.83 s = 0.18 ( ± 0.01 ) s 1 .
τ s r = 1 2 β + ξ I .
θ f r ( t = ) = ϵ α t α I 2 γ .
θ f d ( t = 0 ) = ϵ α t α β I γ ( 2 β + ξ I ) .
θ s d ( t = 0 ) = ϵ b ξ I 2 β + ξ I .
θ s r ( t = ) = ϵ ξ I 2 β + ξ I [ b α t α I 2 ( γ 2 β ) ] .

Metrics