Abstract

A novel design of all-optical logic gates based on nonlinear slot-waveguide couplers is proposed. NOT, OR, and AND logic gates can be realized by a simple single optical-directional coupler configuration. Strong polarization dependencies of slot waveguides are effectively utilized for realizing polarization-independent optical-directional couplers in the linear regime and polarization-dependent all-optical switches in the nonlinear regime. All the simulations performed in this paper were performed for three-dimensional nonlinear channel waveguide structures by using rigorous numerical schemes based on the full-vector finite-element method specially formulated for nonlinear optical waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
    [CrossRef]
  2. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1580-1583 (1982).
    [CrossRef]
  3. F. Di Pasquale and H. E. Hernandez-Figueroa, "Improved all-optical switching in a three-slab nonlinear directional coupler with gain," IEEE J. Quantum Electron. 30, 1254-1258 (1994).
    [CrossRef]
  4. S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices," IEEE J. Quantum Electron. 36, 556-562 (2000).
    [CrossRef]
  5. J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
    [CrossRef]
  6. J.-M. Jeong and M. E. Marhic, "All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer," Opt. Commun. 85, 430-436 (1991).
    [CrossRef]
  7. G. Cancellieri, F. Chiaraluce, E. Gambi, and P. Pierleoni, "Coupled-soliton photonic logic gates: practical design procedures," J. Opt. Soc. Am. B 12, 1300-1306 (1995).
    [CrossRef]
  8. A. Niiyama and M. Koshiba, "Three-dimensional beam propagation analysis of nonlinear optical fibers and optical logic gates," J. Lightwave Technol. 16, 162-168 (1998).
    [CrossRef]
  9. Y. Wang and J. Liu, "All-fiber logical devices based on the nonlinear directional coupler," IEEE Photonics Technol. Lett. 11, 72-74 (1999).
    [CrossRef]
  10. M. Zitelli, E. Fazio, and M. Bertolotti, "All-optical NOR gate based on the interaction between cosine-shaped input beams of orthogonal polarization," J. Opt. Soc. Am. B 16, 214-218 (1999).
    [CrossRef]
  11. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
    [CrossRef]
  12. Y.-D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum Electron. 11, 307-312 (2005).
    [CrossRef]
  13. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructures," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  14. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  15. T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006).
    [CrossRef] [PubMed]
  16. T. Fujisawa and M. Koshiba, "Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides," J. Lightwave Technol. 20, 1876-1884 (2002).
    [CrossRef]
  17. T. Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Opt. Express 11, 1481-1489 (2003).
    [CrossRef] [PubMed]
  18. C. A. Barrios, "High-performance all-optical silicon microswitch," Electron. Lett. 40, 862-863 (2004).
    [CrossRef]
  19. T. B. Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]
  20. T. B. Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
    [CrossRef]
  21. M. R. Watts and H. A. Haus, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
    [CrossRef] [PubMed]
  22. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, "Design rules for slanted-angle polarization rotators," J. Lightwave Technol. 23, 432-445 (2005).
    [CrossRef]

2006 (1)

2005 (5)

2004 (3)

2003 (1)

2002 (2)

T. Fujisawa and M. Koshiba, "Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides," J. Lightwave Technol. 20, 1876-1884 (2002).
[CrossRef]

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

2000 (1)

S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices," IEEE J. Quantum Electron. 36, 556-562 (2000).
[CrossRef]

1999 (2)

1998 (1)

1995 (1)

1994 (1)

F. Di Pasquale and H. E. Hernandez-Figueroa, "Improved all-optical switching in a three-slab nonlinear directional coupler with gain," IEEE J. Quantum Electron. 30, 1254-1258 (1994).
[CrossRef]

1991 (2)

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

J.-M. Jeong and M. E. Marhic, "All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer," Opt. Commun. 85, 430-436 (1991).
[CrossRef]

1988 (1)

G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
[CrossRef]

1982 (1)

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1580-1583 (1982).
[CrossRef]

Aitchison, J. S.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

Almeida, V. R.

Barrios, C. A.

Bertolotti, M.

Brooks, C.

Cancellieri, G.

Chiaraluce, F.

Dalton, L.

Deng, H.

Di Pasquale, F.

F. Di Pasquale and H. E. Hernandez-Figueroa, "Improved all-optical switching in a three-slab nonlinear directional coupler with gain," IEEE J. Quantum Electron. 30, 1254-1258 (1994).
[CrossRef]

El-Mikati, H. A.

S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices," IEEE J. Quantum Electron. 36, 556-562 (2000).
[CrossRef]

Fazio, E.

Filayson, N.

G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
[CrossRef]

Fujisawa, T.

Gambi, E.

Geshiro, M.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Haus, H. A.

Hernandez-Figueroa, H. E.

F. Di Pasquale and H. E. Hernandez-Figueroa, "Improved all-optical switching in a three-slab nonlinear directional coupler with gain," IEEE J. Quantum Electron. 30, 1254-1258 (1994).
[CrossRef]

Hochberg, M.

T. B. Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

T. B. Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
[CrossRef]

Ironside, C. N.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

Jen, A. K.-Y.

Jensen, S. M.

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1580-1583 (1982).
[CrossRef]

Jeong, J.-M.

J.-M. Jeong and M. E. Marhic, "All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer," Opt. Commun. 85, 430-436 (1991).
[CrossRef]

Jessop, P. E.

Jones, T. B.

T. B. Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
[CrossRef]

T. B. Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Kean, A. H.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

Kitamura, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Koshiba, M.

Lawson, R.

Liao, Y.

Lipson, M.

Liu, J.

Y. Wang and J. Liu, "All-fiber logical devices based on the nonlinear directional coupler," IEEE Photonics Technol. Lett. 11, 72-74 (1999).
[CrossRef]

Marhic, M. E.

J.-M. Jeong and M. E. Marhic, "All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer," Opt. Commun. 85, 430-436 (1991).
[CrossRef]

Niiyama, A.

Nishida, K.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Obayya, S. S. A.

S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices," IEEE J. Quantum Electron. 36, 556-562 (2000).
[CrossRef]

Panepucci, R. R.

Pierleoni, P.

Rahman, B. M. A.

S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices," IEEE J. Quantum Electron. 36, 556-562 (2000).
[CrossRef]

Sawa, S.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Scherer, A.

T. B. Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

T. B. Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
[CrossRef]

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
[CrossRef]

Stegeman, G. I.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
[CrossRef]

Sullivan, P. A.

Villeneuve, A.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

Walker, C.

T. B. Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Wang, G.

Wang, Y.

Y. Wang and J. Liu, "All-fiber logical devices based on the nonlinear directional coupler," IEEE Photonics Technol. Lett. 11, 72-74 (1999).
[CrossRef]

Watts, M. R.

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
[CrossRef]

Wu, Y.-D.

Y.-D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum Electron. 11, 307-312 (2005).
[CrossRef]

Xu, Q.

Yabu, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Yevick, D. O.

Zanoni, R.

G. I. Stegeman, E. M. Wright, N. Filayson, R. Zanoni, and C. T. Seaton, "Third-order nonlinear integrated optics," J. Lightwave Technol. 6, 953-970 (1988).
[CrossRef]

Zitelli, M.

Appl. Phys. Lett. (1)

T. B. Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Electron. Lett. (2)

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region," Electron. Lett. 27, 1709-1710 (1991).
[CrossRef]

C. A. Barrios, "High-performance all-optical silicon microswitch," Electron. Lett. 40, 862-863 (2004).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1580-1583 (1982).
[CrossRef]

F. Di Pasquale and H. E. Hernandez-Figueroa, "Improved all-optical switching in a three-slab nonlinear directional coupler with gain," IEEE J. Quantum Electron. 30, 1254-1258 (1994).
[CrossRef]

S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "Full-vectorial finite-element beam propagation method for nonlinear directional coupler devices," IEEE J. Quantum Electron. 36, 556-562 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum Electron. 11, 307-312 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. Wang and J. Liu, "All-fiber logical devices based on the nonlinear directional coupler," IEEE Photonics Technol. Lett. 11, 72-74 (1999).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J.-M. Jeong and M. E. Marhic, "All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer," Opt. Commun. 85, 430-436 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(Color online) Slot-waveguide coupler.

Fig. 2
Fig. 2

Coupling lengths of the slot-waveguide coupler as a function of n s for d = 1.5 μ m .

Fig. 3
Fig. 3

Normalized optical power in the incident slot waveguide of the coupler with w S = 100 nm , n S = 1.41545 , and d = 1.5 μ m as a function of propagation distance.

Fig. 4
Fig. 4

Normalized output powers in the incident slot waveguide of the coupler as a function of propagation distance for n 2 P = 0.0012 μ m 2 .

Fig. 5
Fig. 5

(Color online) (a) Normalized optical powers in the bar and cross ports of the coupler as a function of n 2 P at the propagation distance of 200 μ m . Field distributions of linear guided (b) quasi-TE and (c) quasi-TM modes of the slot waveguide. (d) Normalized optical powers in the bar and cross ports of the coupler as a function of n 2 P at the propagation distance of 596 μ m with d = 1.75 μ m .

Fig. 6
Fig. 6

NOT gate based on nonlinear slot-waveguide couplers.

Fig. 7
Fig. 7

(Color online) NOT gate operation. (a) X i = 0 input, (b) X i = 1 input.

Fig. 8
Fig. 8

Normalized signal-light powers in ports C and D, where the control light is simultaneously launched to port A and the distance between input and output ports is 200 μ m .

Fig. 9
Fig. 9

(Color online) Field distributions of quasi-TM mode without quasi-TE mode incidence at the propagation distances of (a) 0, (b) 100, and (c) 200 μ m for n 2 P = 0.005 μ m 2 .

Fig. 10
Fig. 10

(Color online) Field distributions of quasi-TM mode with quasi-TE mode incidence at the propagation distances of (a) 0, (b) 100, and (c) 200 μ m for n 2 P = 0.005 μ m 2 .

Fig. 11
Fig. 11

All-optical OR and AND gates based on nonlinear slot-waveguide couplers.

Fig. 12
Fig. 12

(Color online) OR and AND gates operations. (a) ( X i , Y i ) = ( 1 , 0 ) input, (b) ( X i , Y i ) = ( 0 , 1 ) input, and (c) ( X i , Y i ) = ( 1 , 1 ) input.

Fig. 13
Fig. 13

Normalized powers of quasi-TM modes in ports C and D as a function of n 2 P , where the distance between input and output ports is 200 μ m .

Fig. 14
Fig. 14

(Color online) Field distributions at the propagation distances of (a) 0, (b) 100, and (c) 200 μ m for ( X i , Y i ) = ( 1 , 0 ) input and n 2 P = 0.006 μ m 2 .

Fig. 15
Fig. 15

(Color online) Field distributions at the propagation distances of (a) 0, (b) 100, and (c) 200 μ m for ( X i , Y i ) = ( 0 , 1 ) input and n 2 P = 0.006 μ m 2 .

Fig. 16
Fig. 16

(Color online) Field distributions at the propagation distances of (a) 0, (b) 100, and (c) 200 μ m for ( X i , Y i ) = ( 1 , 1 ) input and n 2 P = 0.006 μ m 2 . Only the field distributions of quasi-TM modes are shown.

Tables (2)

Tables Icon

Table 1 Logical Input and Output Characteristics of the Structure Shown in Fig. 6. a

Tables Icon

Table 2 Logical Input and Output Characteristics of the Structure shown in Fig. 11. a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n S = n L ( 1 + n 2 E 2 Z 0 ) 1 2 ,

Metrics