Abstract

We have grown high-quality LuAG:Yb3+ crystals with 0.75, 3.8, 10, 12, 15, 20, and 50 at. % concentrations by the vertical Bridgman method. With low-temperature spectroscopy the Stark sublevel structure of the F722 ground state and the F522 excited state has been determined. With room-temperature spectroscopy, the emission cross section was found to be 3×1020cm2, being 1.5 times the YAG:Yb3+ emission cross section. The luminescence quantum efficiency was measured in samples with different Yb3+ concentrations. Its value was found to be 90% for 3.8 and 10 at. %, 84% for 20 at. %, and 70% for 50 at. % Yb3+. The laser-emission tunability under diode pumping was found to extend from 1045 up to 1095 nm in a 12 at. % sample with 3.15 mm thickness.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).
  2. D. S. Sumida, T. Y. Fan, and R. Hutcheson, "Spectroscopy and diode-pumped lasing of Yb3+ doped Lu3Al5O12(Yb:LuAG)," in Advanced Solid-State Lasers, B.H.T.Chai and S.A.Payne, eds. (Optical Society of America, 1995), Vol. 24, pp. 348-350.
  3. T. Kasamatsu, H. Sekita, and Y. Kuwano, "Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers," Appl. Opt. 38, 5149-5153 (1999).
    [CrossRef]
  4. F. Euler and I. A. Bruce, "Oxygen coordinates of compounds with garnet structure," Acta Crystallogr. 19, 971-974 (1965).
    [CrossRef]
  5. A. G. Petrosyan and G. O. Shirinyan, "Peculiarities in crystallization of rare-earth aluminum garnets from non-stoichiometric melts," Inorg. Mater. 29, 258-261 (1993).
  6. K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).
  7. S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
    [CrossRef]
  8. G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
    [CrossRef]
  9. A. G. Petrosyan, "Crystal growth of laser oxides in the vertical Bridgman configuration," J. Cryst. Growth 139, 372-392 (1994).
    [CrossRef]
  10. T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, "Optical centers of europium and ytterbium ions in aluminum garnets," Inorg. Mater. 2, 430-434 (1988).
  11. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
    [CrossRef]
  12. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
    [CrossRef]
  13. A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
    [CrossRef]
  14. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
    [CrossRef]
  15. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
    [CrossRef]
  16. A. A. KaminskiiLaser Crystals (Springer, 1981).
  17. W. P. Risk. "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]
  18. P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
    [CrossRef]
  19. D. Jaque and J. Gracía Solé, "Temperature decrease induced by stimulated emission in the Nd3+ ion-doped YAl3(BO3)4 crystal," Chem. Phys. Lett. 334, 309-313 (2001).
    [CrossRef]
  20. J. A. Muñoz, J. O. Tocho, and F. Cussó, "Photoacoustic determination of the luminescent quantum efficiency of Yb3+ ions in lithium niobate," Appl. Opt. 37, 7096-7099 (1998).
    [CrossRef]
  21. S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
    [CrossRef]
  22. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).
  23. D. Jaque, Z. D. Luo, and J. García Solé. "Quantum efficiency of Nd-doped lasers measured by pump-induced crystal heating: application to the Nd3+:Gd-2(MoO4)(3) crystal," Appl. Phys. B 72, 811-814 (2001).
    [CrossRef]
  24. J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
    [CrossRef]
  25. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  26. P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang. "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YA13(BO3)(4) lasers," Opt. Lett. 25, 731-733 (2000).
    [CrossRef]

2006 (1)

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

2005 (1)

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

2003 (3)

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

2002 (1)

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[CrossRef]

2001 (4)

D. Jaque, Z. D. Luo, and J. García Solé. "Quantum efficiency of Nd-doped lasers measured by pump-induced crystal heating: application to the Nd3+:Gd-2(MoO4)(3) crystal," Appl. Phys. B 72, 811-814 (2001).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

D. Jaque and J. Gracía Solé, "Temperature decrease induced by stimulated emission in the Nd3+ ion-doped YAl3(BO3)4 crystal," Chem. Phys. Lett. 334, 309-313 (2001).
[CrossRef]

2000 (2)

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang. "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YA13(BO3)(4) lasers," Opt. Lett. 25, 731-733 (2000).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

1999 (1)

1998 (1)

1994 (1)

A. G. Petrosyan, "Crystal growth of laser oxides in the vertical Bridgman configuration," J. Cryst. Growth 139, 372-392 (1994).
[CrossRef]

1993 (1)

A. G. Petrosyan and G. O. Shirinyan, "Peculiarities in crystallization of rare-earth aluminum garnets from non-stoichiometric melts," Inorg. Mater. 29, 258-261 (1993).

1988 (2)

T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, "Optical centers of europium and ytterbium ions in aluminum garnets," Inorg. Mater. 2, 430-434 (1988).

W. P. Risk. "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988).
[CrossRef]

1981 (1)

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).

1974 (1)

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

1971 (1)

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

1965 (1)

F. Euler and I. A. Bruce, "Oxygen coordinates of compounds with garnet structure," Acta Crystallogr. 19, 971-974 (1965).
[CrossRef]

Auzel, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Avetisyan, A. A.

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).

Bagdasarov, Kh. S.

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

Baldaccnini, G.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Balembois, F.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Blows, J. L.

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

Bogomolova, G. A.

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Boulon, G.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Brenier, A.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Bruce, I. A.

F. Euler and I. A. Bruce, "Oxygen coordinates of compounds with garnet structure," Acta Crystallogr. 19, 971-974 (1965).
[CrossRef]

Butaeva, T. I.

T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, "Optical centers of europium and ytterbium ions in aluminum garnets," Inorg. Mater. 2, 430-434 (1988).

Canibano, H.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Catunda, T.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[CrossRef]

Chenais, S.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Collombet, A.

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Cussó, F.

Dawes, J. M.

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang. "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YA13(BO3)(4) lasers," Opt. Lett. 25, 731-733 (2000).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

de Camargo, A. S.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[CrossRef]

Dekker, P.

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang. "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YA13(BO3)(4) lasers," Opt. Lett. 25, 731-733 (2000).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

Druon, F.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Euler, F.

F. Euler and I. A. Bruce, "Oxygen coordinates of compounds with garnet structure," Acta Crystallogr. 19, 971-974 (1965).
[CrossRef]

Fan, T. Y.

D. S. Sumida, T. Y. Fan, and R. Hutcheson, "Spectroscopy and diode-pumped lasing of Yb3+ doped Lu3Al5O12(Yb:LuAG)," in Advanced Solid-State Lasers, B.H.T.Chai and S.A.Payne, eds. (Optical Society of America, 1995), Vol. 24, pp. 348-350.

Fukuda, T.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Georges, P.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Goutaudier, C.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

Guyot, Y.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Henderson, B.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

D. S. Sumida, T. Y. Fan, and R. Hutcheson, "Spectroscopy and diode-pumped lasing of Yb3+ doped Lu3Al5O12(Yb:LuAG)," in Advanced Solid-State Lasers, B.H.T.Chai and S.A.Payne, eds. (Optical Society of America, 1995), Vol. 24, pp. 348-350.

Imbusch, G. F.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

Jaque, D.

D. Jaque, Z. D. Luo, and J. García Solé. "Quantum efficiency of Nd-doped lasers measured by pump-induced crystal heating: application to the Nd3+:Gd-2(MoO4)(3) crystal," Appl. Phys. B 72, 811-814 (2001).
[CrossRef]

D. Jaque and J. Gracía Solé, "Temperature decrease induced by stimulated emission in the Nd3+ ion-doped YAl3(BO3)4 crystal," Chem. Phys. Lett. 334, 309-313 (2001).
[CrossRef]

Kaminskii, A. A.

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

A. A. KaminskiiLaser Crystals (Springer, 1981).

Kasamatsu, T.

Kevorkov, A. M.

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

Kuwano, Y.

Laversenne, L.

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Lebbou, K.

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Lima, S. M.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[CrossRef]

Liu, Y.

Luo, Z. D.

D. Jaque, Z. D. Luo, and J. García Solé. "Quantum efficiency of Nd-doped lasers measured by pump-induced crystal heating: application to the Nd3+:Gd-2(MoO4)(3) crystal," Appl. Phys. B 72, 811-814 (2001).
[CrossRef]

Muñoz, J. A.

Novoselov, A.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

Nunes, L. A.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[CrossRef]

Oliver, D. W.

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Omatsu, T.

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

Ovanesyan, K. L.

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Petrosyan, A. G.

A. G. Petrosyan, "Crystal growth of laser oxides in the vertical Bridgman configuration," J. Cryst. Growth 139, 372-392 (1994).
[CrossRef]

A. G. Petrosyan and G. O. Shirinyan, "Peculiarities in crystallization of rare-earth aluminum garnets from non-stoichiometric melts," Inorg. Mater. 29, 258-261 (1993).

T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, "Optical centers of europium and ytterbium ions in aluminum garnets," Inorg. Mater. 2, 430-434 (1988).

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

Petrosyan, A. K.

T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, "Optical centers of europium and ytterbium ions in aluminum garnets," Inorg. Mater. 2, 430-434 (1988).

Piper, J. A.

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang. "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YA13(BO3)(4) lasers," Opt. Lett. 25, 731-733 (2000).
[CrossRef]

Prokhorov, A. M.

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

Risk, W. P.

Sekita, H.

Shirinyan, G. O.

A. G. Petrosyan and G. O. Shirinyan, "Peculiarities in crystallization of rare-earth aluminum garnets from non-stoichiometric melts," Inorg. Mater. 29, 258-261 (1993).

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).

Slack, G. A.

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Solé, J. García

D. Jaque, Z. D. Luo, and J. García Solé. "Quantum efficiency of Nd-doped lasers measured by pump-induced crystal heating: application to the Nd3+:Gd-2(MoO4)(3) crystal," Appl. Phys. B 72, 811-814 (2001).
[CrossRef]

Solé, J. Gracía

D. Jaque and J. Gracía Solé, "Temperature decrease induced by stimulated emission in the Nd3+ ion-doped YAl3(BO3)4 crystal," Chem. Phys. Lett. 334, 309-313 (2001).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Sumida, D. S.

D. S. Sumida, T. Y. Fan, and R. Hutcheson, "Spectroscopy and diode-pumped lasing of Yb3+ doped Lu3Al5O12(Yb:LuAG)," in Advanced Solid-State Lasers, B.H.T.Chai and S.A.Payne, eds. (Optical Society of America, 1995), Vol. 24, pp. 348-350.

Tocho, J. O.

Vilegzhanin, D. N.

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

Wang, J.

Wang, P.

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang. "Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YA13(BO3)(4) lasers," Opt. Lett. 25, 731-733 (2000).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

Yoshikawa, A.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Acta Crystallogr. (1)

F. Euler and I. A. Bruce, "Oxygen coordinates of compounds with garnet structure," Acta Crystallogr. 19, 971-974 (1965).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

D. Jaque, Z. D. Luo, and J. García Solé. "Quantum efficiency of Nd-doped lasers measured by pump-induced crystal heating: application to the Nd3+:Gd-2(MoO4)(3) crystal," Appl. Phys. B 72, 811-814 (2001).
[CrossRef]

J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, "Thermal lensing measurements and thermal conductivity of Yb:YAB," Appl. Phys. B 76, 289-292 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, and T. Catunda. "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

D. Jaque and J. Gracía Solé, "Temperature decrease induced by stimulated emission in the Nd3+ ion-doped YAl3(BO3)4 crystal," Chem. Phys. Lett. 334, 309-313 (2001).
[CrossRef]

Dokl. Akad. Nauk SSSR (1)

Kh. S. Bagdasarov, G. A. Bogomolova, D. N. Vilegzhanin, A. A. Kaminskii, A. M. Kevorkov, A. G. Petrosyan, and A. M. Prokhorov, "Luminescence and stimulated emission of Yb3+ ions in aluminum garnets," Dokl. Akad. Nauk SSSR 216, 1247-1249 (1974).

IEEE J. Quantum Electron. (1)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall. "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb : YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
[CrossRef]

Inorg. Mater. (3)

T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, "Optical centers of europium and ytterbium ions in aluminum garnets," Inorg. Mater. 2, 430-434 (1988).

A. G. Petrosyan and G. O. Shirinyan, "Peculiarities in crystallization of rare-earth aluminum garnets from non-stoichiometric melts," Inorg. Mater. 29, 258-261 (1993).

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, "Optical dispersion and thermal expansion of Lu3Al5O12, Er3Al5O12 and Y3Al5O12 garnets," Inorg. Mater. 3, 459-462 (1981).

J. Appl. Phys. (1)

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

J. Cryst. Growth (1)

A. G. Petrosyan, "Crystal growth of laser oxides in the vertical Bridgman configuration," J. Cryst. Growth 139, 372-392 (1994).
[CrossRef]

J. Lumin. (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldaccnini, "The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper. "Highly efficient diode-pumped ytterbium-doped yttrium aluminum berate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (3)

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, "Diode-pumped Yb:GGG laser: comparison with Yb:YAG," Opt. Mater. 22, 99-106 (2003).
[CrossRef]

Phys. Rev. B (1)

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rare-earth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Other (4)

A. A. KaminskiiLaser Crystals (Springer, 1981).

D. S. Sumida, T. Y. Fan, and R. Hutcheson, "Spectroscopy and diode-pumped lasing of Yb3+ doped Lu3Al5O12(Yb:LuAG)," in Advanced Solid-State Lasers, B.H.T.Chai and S.A.Payne, eds. (Optical Society of America, 1995), Vol. 24, pp. 348-350.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Room-temperature absorption spectrum of LuAG : Yb 3 + .

Fig. 2
Fig. 2

Room-temperature emission spectrum of LuAG : Yb 3 + .

Fig. 3
Fig. 3

Low-temperature emission spectrum of LuAG : Yb 3 + .

Fig. 4
Fig. 4

Low-temperature absorption spectrum of LuAG : Yb 3 + .

Fig. 5
Fig. 5

Schematic energy-level structure of Yb 3 + ions in LuAG. The relevant transitions involved in the quantum-efficiency determination are indicated by arrows.

Fig. 6
Fig. 6

Ratio between crystal-temperature increment and absorbed pump power as a function of pump wavelength obtained from the 3.8 at.% doped Yb 3 + : LuAG sample.

Fig. 7
Fig. 7

Fluorescence quantum efficiency as a function of ytterbium concentration.

Fig. 8
Fig. 8

(a) Steady increment in crystal temperature as a function of absorbed pump power obtained for a 12 at.% Yb 3 + : LuAG laser crystal operating under diode pumping. (b) Laser power as a function of absorbed pump power obtained from a 12 at.% Yb 3 + : LuAG laser crystal operating under diode pumping. Output mirror transmittance was 1 % in both cases.

Fig. 9
Fig. 9

Spectral distribution of laser radiation in the free-running mode (dashed curve) and when the birefringence filter was placed inside the cavity (solid curve). Data correspond to the 12 at.% doped sample.

Fig. 10
Fig. 10

Infrared laser power as a function of laser wavelength for an absorbed pump power of 1.8 W as obtained from the 12 at.% doped sample.

Tables (2)

Tables Icon

Table 1 Fluorescence Lifetime versus Yb 3 + Content in LuAG

Tables Icon

Table 2 Splitting of the Yb 3 + Levels in Garnet Hosts

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ e ( λ ) = λ 4 I ( λ ) 8 π c τ rad n 2 I ( λ ) d λ ,
ϕ = τ F τ R .
Δ T st κ N ( λ p ) [ 10 7 λ p E 1 + ϕ ( E 1 10 7 λ F ) + ( 1 ϕ ) E 1 ] = κ N ( λ ) [ 10 7 λ p ϕ 10 7 λ F ] ,
N ( λ p ) = α P abs ( λ P ) λ P ,
Δ T st ( λ P ) P abs ( λ P ) = α κ 10 7 [ 1 ϕ λ P λ F ] .
Δ T st l a sin g = α k 10 7 P abs ( 1 λ P λ L ) .

Metrics