Abstract

An analytic theory is proposed that characterizes Q switching in an active mode-locked cavity as the nonlinear interaction of two unstable modes: one symmetric, another antisymmetric. The phase difference between these modes generates a nonlinear beating interaction that gives rise to quasi-periodic behavior in the laser cavity. This quasi-periodic behavior is responsible for the Q-switching phenomenon and is controlled by the interaction and overlap between neighboring pulses. With a linear stability analysis, a simple qualitative description of the Q-switching phenomenon is given that is verified with numerical simulations of the governing active mode-locked equations. This model characterizes the Q switching as a function of the physical parameters of the laser cavity and elucidates the mechanisms for controlling its behavior.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription