Abstract

We demonstrate that a negative-permittivity material (silicon carbide) sandwiched between two layers of positive-permittivity material (silicon oxide) can be used for enhancement of the resolution of near-field imaging via the superlensing effect. The resulting three-layer metamaterial is also shown to exhibit an enhanced transmission when its effective dielectric permittivity matches that of the vacuum. Experimental far-field diagnostics of the superlensing based on measuring transmission coefficients through the metal-coated superlens is implemented using Fourier-transformed infrared microscopy. Superlensing is shown to be a highly resonant phenomenon manifested in a narrow frequency range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer Tracts in Modern Physics (Springer, 2000), Vol. 158.
  2. R. S. Benninnk, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999).
    [CrossRef]
  3. A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995).
    [CrossRef]
  4. M. J. Bloemer and M. Scalora, "Transmissive properties of Ag-MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
    [CrossRef]
  5. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
    [CrossRef]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  8. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  9. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  12. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  13. G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
    [CrossRef]
  14. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
    [CrossRef] [PubMed]
  15. G. Shvets and Y. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
    [CrossRef]
  16. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
    [CrossRef]
  17. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  18. R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001).
    [CrossRef]
  19. F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).
  20. X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
    [CrossRef]
  21. Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
    [CrossRef]
  22. C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
    [CrossRef]
  23. D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]
  24. R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
    [CrossRef]
  25. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  26. C. Kittel, Introduction to Solid-State Physics, 8th Ed. (Wiley, 2005).
  27. J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002).
    [CrossRef]
  28. G. Shvets, "Applications of surface plasmon and phonon polaritons to developing left-handed materials and nanolithography," Proc. SPIE 5221, 124-132 (2003).
    [CrossRef]
  29. G. Shvets and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
    [CrossRef]
  30. D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005).
    [CrossRef]
  31. FEMLAB Reference Manual 2003 Version 2.3, Comsol AB, Sweden.
  32. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  33. D. E. Aspnes, "Local field effects and effective medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
    [CrossRef]
  34. S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
    [CrossRef]
  35. J R. Birch and F. J. J. Clarke, "Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal," Anal. Chim. Acta 380, 369-378 (1999).
    [CrossRef]
  36. E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
    [CrossRef]
  37. P.-O. Nilsson, "Determination of optical constants from intensity measurements at normal incidence," Appl. Opt. 7, 435-442 (1968).
    [CrossRef] [PubMed]
  38. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999.)
  39. W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959).
    [CrossRef]

2005

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

2004

R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
[CrossRef]

G. Shvets and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

G. Shvets and Y. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

2003

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

G. Shvets, "Applications of surface plasmon and phonon polaritons to developing left-handed materials and nanolithography," Proc. SPIE 5221, 124-132 (2003).
[CrossRef]

2002

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002).
[CrossRef]

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

2001

R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J R. Birch and F. J. J. Clarke, "Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal," Anal. Chim. Acta 380, 369-378 (1999).
[CrossRef]

R. S. Benninnk, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999).
[CrossRef]

1998

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag-MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1995

A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995).
[CrossRef]

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

1991

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
[CrossRef]

1982

D. E. Aspnes, "Local field effects and effective medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

1968

1959

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, "Local field effects and effective medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Awschalom, D. D.

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Basov, D. N.

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Benninnk, R. S.

Bethea, C. G.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Birch, R.

J R. Birch and F. J. J. Clarke, "Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal," Anal. Chim. Acta 380, 369-378 (1999).
[CrossRef]

Blaikie, R. J.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

Bloemer, M. J.

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag-MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999.)

Boyd, R. W.

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Burch, K. S.

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Capasso, F.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Chan, C. T.

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Cho, A. Y.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Clarke, F. J. J.

J R. Birch and F. J. J. Clarke, "Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal," Anal. Chim. Acta 380, 369-378 (1999).
[CrossRef]

Colombelli, R.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Dewa, A. S.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Fleischman, A. J.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001).
[CrossRef]

Gmachl, C.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Heeger, A. J.

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Hundhausen, M.

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

Hwang, H. Y.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001).
[CrossRef]

Irvine, K. G.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
[CrossRef]

Jacob, C.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

Kawakami, R.

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid-State Physics, 8th Ed. (Wiley, 2005).

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959).
[CrossRef]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Korobkin, D.

D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Ley, L.

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Li, Z. Q.

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

Liu, H. C.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Martini, R.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Mehregany, M.

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

Melville, D. O. S.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

Merlin, R.

R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
[CrossRef]

Mikolaitis, K. J.

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

Moses, D.

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

Myers, T. L.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Narimanov, E. E.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nilsson, P.-O.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Paiella, R.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995).
[CrossRef]

Pirouz, P.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

Platzman, P. M.

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002).
[CrossRef]

Podolskiy, V. A.

Ramakrishna, S. A.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Rohmfeld, S.

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

Rosenbluth, M.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Sarychev, A. K.

Scalora, M.

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag-MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Schultz, S.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Sergent, A. M.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer Tracts in Modern Physics (Springer, 2000), Vol. 158.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shen, J. T.

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002).
[CrossRef]

Sheng, P.

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Shvets, G.

D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005).
[CrossRef]

G. Shvets and Y. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

G. Shvets and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

G. Shvets, "Applications of surface plasmon and phonon polaritons to developing left-handed materials and nanolithography," Proc. SPIE 5221, 124-132 (2003).
[CrossRef]

Singley, E. J.

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Sipe, J. E.

Sivco, D. L.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Smith, D. R.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Spencer, M. G.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959).
[CrossRef]

Stephens, J.

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tang, X.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Taubman, M. S.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Unterrainer, K.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Urzhumov, Y.

D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005).
[CrossRef]

G. Shvets and Y. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

G. Shvets and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959).
[CrossRef]

Wang, G. M.

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

Ward, A. J.

A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995).
[CrossRef]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001).
[CrossRef]

Wen, W.

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Whittaker, E. A.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Williams, R. M.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999.)

Yoon, Y.-K.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhang, D.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Zhou, L.

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Zorman, C. A.

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

Am. J. Phys.

D. E. Aspnes, "Local field effects and effective medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Anal. Chim. Acta

J R. Birch and F. J. J. Clarke, "Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal," Anal. Chim. Acta 380, 369-378 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
[CrossRef]

J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002).
[CrossRef]

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag-MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991).
[CrossRef]

Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Int. J. Quantum Chem.

F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).

J. Appl. Phys.

S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002).
[CrossRef]

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995).
[CrossRef]

J. Mod. Opt.

D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005).
[CrossRef]

J. Phys. Condens. Matter

A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

G. Shvets and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. London, Ser. A

R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001).
[CrossRef]

Phys. Rev.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959).
[CrossRef]

Phys. Rev. B

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003).
[CrossRef]

Phys. Rev. Lett.

G. Shvets and Y. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Proc. SPIE

G. Shvets, "Applications of surface plasmon and phonon polaritons to developing left-handed materials and nanolithography," Proc. SPIE 5221, 124-132 (2003).
[CrossRef]

Science

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Other

C. Kittel, Introduction to Solid-State Physics, 8th Ed. (Wiley, 2005).

FEMLAB Reference Manual 2003 Version 2.3, Comsol AB, Sweden.

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer Tracts in Modern Physics (Springer, 2000), Vol. 158.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a near-field superlens. A thin film of a polaritonic material with a negative dielectric permittivity ϵ ϵ d is sandwiched between two layers of a regular dielectric with ϵ d > 0 . The front side of the superlens is covered by a perfectly reflecting metallic screen. A narrow (subwavelength) slit in a screen illuminated by a planar electromagnetic wave defines the light source. An image of the slit is formed on the back side of the lens.

Fig. 2
Fig. 2

(Color online) Superlensing at λ = 11 μ m . The object is a periodic array of narrow ( 0.5 μ m ) slits separated by D = 2.5 μ m along y direction illuminated by a planar wave. Top, color-coded magnetic field strength B z and B z = const isocontours and Poynting vectors (arrows) in and around the Si O 2 - Si C - Si O 2 superlens illuminated by a normally incident from the left p-polarized electromagnetic wave. Bottom, electric field magnitude E in the object plane behind the screen ( x = 400 nm , solid curve) and in the focal plane ( x = 400 nm , dashed curve). Spikes in the object plane are due to “sparking” at the edges of the slit.

Fig. 3
Fig. 3

(Color online) Numerical simulation. Evolution of transverse Fourier harmonics along the optical axis x in a superlens excited by a screen with a periodic array ( D = 2.5 μ m ) of slits ( 0.5 μ m wide), at the superlensing frequency ( λ = 10.972 μ m ) . Dielectric constants used are ϵ Si C = 3.76 + 0.24 i and ϵ Si O 2 = 3.76 + 0.17 i . The first and second harmonics are dominated by the exponentially growing terms in the negative dielectric slab ( 200 < x < 200 nm ) . The boundaries of the SiC and Si O 2 layers are indicated by thick solid lines.

Fig. 4
Fig. 4

(Color online) (a) Transmission through a three-layer Si O 2 ( 200 nm ) - Si C ( 400 nm ) - Si O 2 ( 200 nm ) nanostructure. The Dot-dashed curve indicates perfect transparency at ω 1 = 931 cm 1 : simulation result; losses in Si O 2 and SiC are neglected. The solid curve indicates the simulation result; losses are included. The dashed curve indicates experimental measurements using a FTIR microscope. (b) Reflection from a 400 nm SiC film (dashed curve) and a Si O 2 ( 200 nm ) - Si C ( 400 nm ) - Si O 2 ( 200 nm ) composite film. Addition of the 400 nm (or λ 25 ) Si O 2 coating reduces the reflection coefficient by a factor of 6 at ω = 930 cm 1 .

Fig. 5
Fig. 5

(Color online) (a) Si O 2 - Si C - Si O 2 superlens with two sets of slits: image-forming slits and diagnostic slits. Only Sample IN for which diagnostic slits are directly opposite to the image-forming slits is shown. In the Sample OUT diagnostic slits are laterally displaced by D 2 = 1.25 μ m . (b) Theoretical calculation of the ratio of transmissions through IN and OUT samples. Peak at λ 0 11 μ m indicates superlensing.

Fig. 6
Fig. 6

Periodic array of slits produced in the gold film using ion milling. Inset, an SEM image of a segment of Si O 2 - Si C - Si O 2 membrane covered with a 60 nm thick gold film on both sides. The plane of view is tilted by 52°.

Fig. 7
Fig. 7

(Color online) Optical transmission microscope image ( × 100 objective) of the OUT structure with half-period shifted slit arrays on both sides of the superlens. Darker lines between bright lines represent the slits on the opposite side of the structure.

Fig. 8
Fig. 8

(Color online) Real part of the dielectric constant of the silicon carbide as a function of the wavenumber. Dashed curves, Eq. (4) with parameters ω TO = 796 cm 1 , ω LO = 972 cm 1 , ϵ = 6.5 , Γ = 5 cm 1 ; diamonds (appear as a solid curve because of high sampling resolution), experimental data; dot-dashed line, best fit of the experimental data to Eq. (4).

Fig. 9
Fig. 9

(Color online) FTIR measurements of trans - mission through the IN (solid curve) and OUT (dashed curve) Au ( 60 nm ) - Si O 2 ( 200 nm ) - Si C ( 400 nm ) - Si O 2 ( 200 nm ) - Au ( 60 nm ) superlenses. A FIB-milled gold film is used to define the image and to collect transmitted light. In the IN sample diagnostic slits are directly opposite to the image forming slits. In the OUT sample diagnostic slits are laterally shifted by D 2 = 1.25 μ m with respect to image forming slits.

Fig. 10
Fig. 10

(Color online) Ratio of the transmission coefficients through the IN and OUT samples as a function of the frequency. Solid curve, the symmetric superlens [Sample (ii), Au ( 60 nm ) - Si O 2 ( 200 nm ) - Si C ( 400 nm ) - Si O 2 ( 200 nm ) - Au ( 60 nm ) ] structure; dashed curve, the nonsymmetric superlens [Sample (iii), Au ( 60 nm ) - Si O 2 ( 400 nm ) - Si C ( 400 nm ) - Si O 2 ( 400 nm ) - Au ( 60 nm ) ] structure.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

B z ( x = 0 , y ) = + d k A ( k ) exp ( i k y ) ,
B z ( y , x = 2 d ) = + d y B z ( y , x = 0 ) G ( y y ) .
T ( k ) = 4 ( χ d ϵ d ) ( χ p ϵ ) exp ( χ d d ) ( χ p ϵ + χ d ϵ d ) 2 exp ( χ p d ) ( χ p ϵ χ d ϵ d ) 2 exp ( χ p d ) ,
T ( k ) 4 exp ( 2 k d ) ( σ ¯ i ϵ d ω 2 k 2 c 2 ) + 4 exp ( 2 k d ) ,
ϵ = ϵ ω 2 ω L O 2 + i Γ ω ω 2 ω TO 2 + i Γ ω ,
R = ( R s + R p ) 2 , T = ( T s + T p ) 2 ,
R s , p = | r s , p + r s , p exp ( 2 i n k L cos ϕ ) 1 + r s , p r s , p exp ( 2 i n k L cos ϕ ) | 2 ,
T s , p = | t s , p t s , p exp [ i k L ( cos ϕ n cos ϕ ) ] 1 + r s , p r s , p exp ( 2 i n k L cos ϕ ) | 2
Δ ϵ ( { p } ) = ϵ data ϵ fit ( { p } ) = ( 1 N ) i = 1 N ϵ data ( ω i ) ϵ fit ( ω i , { p } ) 2 .

Metrics