Abstract

In two-color optical Kerr effect measurements of water, additional signals can occur in the pulse overlap region if the energy difference between pump and probe pulses approaches the Raman resonance of the OH-stretch vibration. These features can be understood by taking into account the polarization of the pump beam and the chirp of the pulses. We present a simple model that describes well the experimental results and shows the dependence of these features on the ellipticity of the pump beam polarization.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
    [CrossRef]
  2. P. Vöhringer and N. F. Scherer, 'Transient grating optical heterodyne detected impulsive stimulated Raman scattering in simple liquids,' J. Phys. Chem. 99, 2684-2695 (1995).
    [CrossRef]
  3. K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
    [CrossRef]
  4. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy,' Biophys. J. 80, 3019-3024 (2001).
    [CrossRef] [PubMed]
  5. S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
    [CrossRef]
  6. M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
    [CrossRef]
  7. S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
    [CrossRef]
  8. R. Righini, 'Ultrafast optical Kerr effect in liquids and solids,' Science 262, 1386-1390 (1993).
    [CrossRef] [PubMed]
  9. D. McMorrow, W. T. Lotshaw, and G. A. Kenneywallace, 'Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,' IEEE J. Quantum Electron. 24, 443-454 (1988).
    [CrossRef]
  10. S. Kinoshita, T. Ariyoshi, and Y. Kai, 'A peculiar interference phenomenon observed in femtosecond optical Kerr effect spectroscopy for nearly transparent materials,' Chem. Phys. Lett. 257, 303-308 (1996).
    [CrossRef]
  11. A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).
  12. S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).
  13. L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
    [CrossRef]
  14. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).
  15. W. F. Murphy and H. J. Bernstein, 'Raman spectra and assignment of the vibrational stretching region of water,' J. Chem. Phys. 76, 1147-1152 (1972).
    [CrossRef]
  16. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).
  17. V. H. Astinov and G. M. Georgiev, 'Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,' Appl. Phys. B 63, 62-68 (1996).
    [CrossRef]
  18. M. D. Levenson and J. J. Song, 'Raman-induced Kerr effect with elliptical polarization,' J. Opt. Soc. Am. 66, 641-643 (1976).
    [CrossRef]
  19. Note that in the frequency domain the sequence of the indices for the polarizations is in the same order as the frequency arguments [X1234(w1,w2,w3,w4)] and thus does not directly correspond to the ordering of the indices of the response functions R1234, where it was related to the time ordering.
  20. D. A. Long, The Raman Effect (Wiley, 2002).
    [CrossRef]
  21. R. W. Hellwarth, 'Third-order optical susceptibilities of liquids and solids,' Prog. Quantum Electron. 5, 1-68 (1977).
    [CrossRef]
  22. I. Itzkan and D. A. Leonard, 'Observation of coherent anti-Stokes Raman scattering from liquid water,' Appl. Phys. Lett. 26, 106-108 (1975).
    [CrossRef]

2001 (1)

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy,' Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
[CrossRef]

1999 (2)

A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

1997 (1)

S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
[CrossRef]

1996 (2)

S. Kinoshita, T. Ariyoshi, and Y. Kai, 'A peculiar interference phenomenon observed in femtosecond optical Kerr effect spectroscopy for nearly transparent materials,' Chem. Phys. Lett. 257, 303-308 (1996).
[CrossRef]

V. H. Astinov and G. M. Georgiev, 'Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,' Appl. Phys. B 63, 62-68 (1996).
[CrossRef]

1995 (1)

P. Vöhringer and N. F. Scherer, 'Transient grating optical heterodyne detected impulsive stimulated Raman scattering in simple liquids,' J. Phys. Chem. 99, 2684-2695 (1995).
[CrossRef]

1994 (2)

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
[CrossRef]

1993 (1)

R. Righini, 'Ultrafast optical Kerr effect in liquids and solids,' Science 262, 1386-1390 (1993).
[CrossRef] [PubMed]

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenneywallace, 'Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,' IEEE J. Quantum Electron. 24, 443-454 (1988).
[CrossRef]

1977 (1)

R. W. Hellwarth, 'Third-order optical susceptibilities of liquids and solids,' Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

1976 (1)

1975 (1)

I. Itzkan and D. A. Leonard, 'Observation of coherent anti-Stokes Raman scattering from liquid water,' Appl. Phys. Lett. 26, 106-108 (1975).
[CrossRef]

1972 (1)

W. F. Murphy and H. J. Bernstein, 'Raman spectra and assignment of the vibrational stretching region of water,' J. Chem. Phys. 76, 1147-1152 (1972).
[CrossRef]

Agarwal, A.

A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).

Ariyoshi, T.

S. Kinoshita, T. Ariyoshi, and Y. Kai, 'A peculiar interference phenomenon observed in femtosecond optical Kerr effect spectroscopy for nearly transparent materials,' Chem. Phys. Lett. 257, 303-308 (1996).
[CrossRef]

Astinov, V. H.

V. H. Astinov and G. M. Georgiev, 'Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,' Appl. Phys. B 63, 62-68 (1996).
[CrossRef]

Bernstein, H. J.

W. F. Murphy and H. J. Bernstein, 'Raman spectra and assignment of the vibrational stretching region of water,' J. Chem. Phys. 76, 1147-1152 (1972).
[CrossRef]

Bürsing, H.

K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
[CrossRef]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).

Constantine, S.

S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
[CrossRef]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy,' Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

Demirdöven, N.

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

Desrosiers, A. E.

L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
[CrossRef]

Eisenberg, D.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

Fan, R.

L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
[CrossRef]

Farrer, R. A.

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

Fecko, C. J.

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

Fourkas, J. T.

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

Georgiev, G. M.

V. H. Astinov and G. M. Georgiev, 'Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,' Appl. Phys. B 63, 62-68 (1996).
[CrossRef]

Golonzka, O.

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, 'Third-order optical susceptibilities of liquids and solids,' Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Itzkan, I.

I. Itzkan and D. A. Leonard, 'Observation of coherent anti-Stokes Raman scattering from liquid water,' Appl. Phys. Lett. 26, 106-108 (1975).
[CrossRef]

Kai, Y.

S. Kinoshita, T. Ariyoshi, and Y. Kai, 'A peculiar interference phenomenon observed in femtosecond optical Kerr effect spectroscopy for nearly transparent materials,' Chem. Phys. Lett. 257, 303-308 (1996).
[CrossRef]

Kamada, K.

A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).

Kauzmann, W.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

Kenneywallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenneywallace, 'Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,' IEEE J. Quantum Electron. 24, 443-454 (1988).
[CrossRef]

Khalil, M.

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

Kinoshita, S.

S. Kinoshita, T. Ariyoshi, and Y. Kai, 'A peculiar interference phenomenon observed in femtosecond optical Kerr effect spectroscopy for nearly transparent materials,' Chem. Phys. Lett. 257, 303-308 (1996).
[CrossRef]

Leonard, D. A.

I. Itzkan and D. A. Leonard, 'Observation of coherent anti-Stokes Raman scattering from liquid water,' Appl. Phys. Lett. 26, 106-108 (1975).
[CrossRef]

Levenson, M. D.

Lindner, J.

K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
[CrossRef]

Long, D. A.

D. A. Long, The Raman Effect (Wiley, 2002).
[CrossRef]

Lotshaw, W. T.

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenneywallace, 'Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,' IEEE J. Quantum Electron. 24, 443-454 (1988).
[CrossRef]

Loughnane, B. J.

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenneywallace, 'Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,' IEEE J. Quantum Electron. 24, 443-454 (1988).
[CrossRef]

Miller, R. J. D.

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

Mohanty, U.

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

Morais, J.

S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
[CrossRef]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).

Murphy, W. F.

W. F. Murphy and H. J. Bernstein, 'Raman spectra and assignment of the vibrational stretching region of water,' J. Chem. Phys. 76, 1147-1152 (1972).
[CrossRef]

Ohta, K.

A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).

Palese, S.

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

Potma, E. O.

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy,' Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

Righini, R.

R. Righini, 'Ultrafast optical Kerr effect in liquids and solids,' Science 262, 1386-1390 (1993).
[CrossRef] [PubMed]

Scherer, N. F.

P. Vöhringer and N. F. Scherer, 'Transient grating optical heterodyne detected impulsive stimulated Raman scattering in simple liquids,' J. Phys. Chem. 99, 2684-2695 (1995).
[CrossRef]

L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
[CrossRef]

Schilling, L.

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

Scodinu, A.

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

Shimizu, Y.

A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).

Song, J. J.

Staver, P. R.

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

Tokmakoff, A.

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

Vöhringer, P.

K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
[CrossRef]

P. Vöhringer and N. F. Scherer, 'Transient grating optical heterodyne detected impulsive stimulated Raman scattering in simple liquids,' J. Phys. Chem. 99, 2684-2695 (1995).
[CrossRef]

Wiersma, D. A.

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy,' Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

Winkler, K.

K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
[CrossRef]

Zhou, Y.

S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
[CrossRef]

Ziegler, L. D.

S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
[CrossRef]

L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
[CrossRef]

Appl. Phys. B (1)

V. H. Astinov and G. M. Georgiev, 'Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,' Appl. Phys. B 63, 62-68 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

I. Itzkan and D. A. Leonard, 'Observation of coherent anti-Stokes Raman scattering from liquid water,' Appl. Phys. Lett. 26, 106-108 (1975).
[CrossRef]

Biophys. J. (1)

E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Femtosecond dynamics of intracellular water probed with nonlinear optical Kerr effect microspectroscopy,' Biophys. J. 80, 3019-3024 (2001).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

M. Khalil, O. Golonzka, N. Demirdöven, C. J. Fecko, and A. Tokmakoff, 'Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids,' Chem. Phys. Lett. 321, 231-237 (2000).
[CrossRef]

S. Kinoshita, T. Ariyoshi, and Y. Kai, 'A peculiar interference phenomenon observed in femtosecond optical Kerr effect spectroscopy for nearly transparent materials,' Chem. Phys. Lett. 257, 303-308 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenneywallace, 'Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,' IEEE J. Quantum Electron. 24, 443-454 (1988).
[CrossRef]

J. Chem. Phys. (4)

K. Winkler, J. Lindner, H. Bürsing, and P. Vöhringer, 'Ultrafast Raman-induced Kerr-effect of water: single molecule versus collective motions,' J. Chem. Phys. 113, 4674-4682 (2000).
[CrossRef]

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, 'Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids,' J. Chem. Phys. 111, 2686-2694 (1999).
[CrossRef]

L. D. Ziegler, R. Fan, A. E. Desrosiers, and N. F. Scherer, 'Femtosecond polarization spectroscopy: a density matrix description,' J. Chem. Phys. 100, 1823-1839 (1994).
[CrossRef]

W. F. Murphy and H. J. Bernstein, 'Raman spectra and assignment of the vibrational stretching region of water,' J. Chem. Phys. 76, 1147-1152 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (2)

P. Vöhringer and N. F. Scherer, 'Transient grating optical heterodyne detected impulsive stimulated Raman scattering in simple liquids,' J. Phys. Chem. 99, 2684-2695 (1995).
[CrossRef]

S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, 'Femtosecond optical Kerr-effect studies of water,' J. Phys. Chem. 98, 6308-6316 (1994).
[CrossRef]

J. Phys. Chem. A (1)

S. Constantine, Y. Zhou, J. Morais, and L. D. Ziegler, 'Dispersed optical heterodyne detected birefringence and dichroism of transparent liquids,' J. Phys. Chem. A 101, 5456-5462 (1997).
[CrossRef]

Nonlinear Opt. (1)

A. Agarwal, K. Kamada, Y. Shimizu, and K. Ohta, 'Coherent dip in optical Kerr measurement arising from grating formation in weakly absorptive media,' Nonlinear Opt. 21, 335-342 (1999).

Prog. Quantum Electron. (1)

R. W. Hellwarth, 'Third-order optical susceptibilities of liquids and solids,' Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Science (1)

R. Righini, 'Ultrafast optical Kerr effect in liquids and solids,' Science 262, 1386-1390 (1993).
[CrossRef] [PubMed]

Other (5)

S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Clarendon, 1969).

Note that in the frequency domain the sequence of the indices for the polarizations is in the same order as the frequency arguments [X1234(w1,w2,w3,w4)] and thus does not directly correspond to the ordering of the indices of the response functions R1234, where it was related to the time ordering.

D. A. Long, The Raman Effect (Wiley, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

OHD-OKE transients measured in water with different pulse dispersions. (a) Optimally compressed (inset shows the same curve on a logarithmic scale). (b) Positively chirped pulses. (c) Negatively chirped pulses. Dashed curve is the CARS signal.

Fig. 2
Fig. 2

(a) Upper panel: spectra of pump and probe pulses, indicating the energy of the Raman transition. Lower panel: temporal overlap condition for the resonant wavelengths with different pulse dispersions. Darker grays correspond to longer wavelengths. (b) Pathways for coherent signals. (See text for details.)

Fig. 3
Fig. 3

OHD-OKE signals for different ellipticities of the probe pulse. The phase retardation between the x and the y components of the pump beam, φ, is indicated in each plot. The calibration ticks on the vertical axis are the same for all plots. Left: experimental curves (pump and probe beams were negatively chirped to an autocorrelation of 300 fs ). Right: simulated curves (using the parameters of Table 1).

Tables (1)

Tables Icon

Table 1 Parameters Used for the Simulation of the OKE Signal in Fig. 3, Including Resonant Contributions [see Eq. (14)]

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P i ( 3 ) ( t ) = j k l 0 d t 3 0 d t 2 0 d t 1 R i j k l ( 3 ) ( t ; t 3 , t 2 , t 1 ) E j ( t t 3 ) E k ( t t 3 t 2 ) E l ( t t 3 t 2 t 1 ) .
P i ( 3 ) ( t , τ ) = j k l E j pr ( t τ ) 0 d t 2 R i j k l ( 3 ) ( t ; τ ) E k pu * ( t t 2 ) E l pu ( t t 2 ) .
E i S ( ω , τ ) = i 2 π ω l n c P i ( 3 ) ( ω , τ ) ,
S i ( ω 2 , τ ) 2 Re [ E i LO * ( ω 2 ) E i S ( ω 2 , τ ) ] 2 Im [ E i LO * ( ω 2 ) P i ( 3 ) ( ω 2 , τ ) ] ,
P i ( 3 ) ( ω 2 ) = j k l χ i j k l ( 3 ) ( ω 2 , ω 1 , ω 1 , ω 2 ) E j pu ( ω 1 ) E k pu * ( ω 1 ) E l pr ( ω 2 ) ,
S i ( ω 2 , τ ) Im [ i E i pr * ( ω 2 ) P i ( 3 ) ( ω 2 , τ ) ] = Re [ E i pr * ( ω 2 ) P i ( 3 ) ( ω 2 , τ ) ] .
g x pu = a cos ( α ) + i b sin ( α ) ,
g y pu = a sin ( α ) i b cos ( α ) ,
g x pu = 1 2 [ cos ( φ 2 ) + i sin ( φ 2 ) ] = 1 2 exp ( i φ 2 ) ,
g y pu = 1 2 exp ( i φ 2 ) .
P y ( 3 ) ( ω 2 ) = χ y x y x ( 3 ) ( ω 2 , ω 1 , ω 1 , ω 2 ) E x pu ( ω 1 ) E y pu * ( ω 1 ) E x pr ( ω 2 ) + χ y y x x ( 3 ) ( ω 2 , ω 1 , ω 1 , ω 2 ) E y pu ( ω 1 ) E x pu * ( ω 1 ) E x pr ( ω 2 ) = E pr E pu 2 [ χ y x y x ( 3 ) ( a sin α + i b cos α ) ( a cos α + i b sin α ) + χ y y x x ( 3 ) ( a cos α i b sin α ) ( a sin α i b cos α ) ] = E pr E pu 2 [ ( a 2 b 2 ) cos α sin α ( χ y x y x ( 3 ) + χ y y x x ( 3 ) ) + i a b ( χ y x y x ( 3 ) χ y y x x ( 3 ) ) ] ,
Re [ E P ( 3 ) ] ( a 2 b 2 ) cos α sin α Re [ χ y x y x ( 3 ) + χ y y x x ( 3 ) ] + a b Im [ χ y y x x ( 3 ) χ y x y x ( 3 ) ] .
χ i j k l RA ( ω 2 , ω 1 , ω 1 , ω 2 ) = α i j ( ω 2 , ω 1 ) α k l * ( ω 2 , ω 1 ) ,
χ i j k l OKE ( ω 2 , ω 1 , ω 1 , ω 2 ) = χ el OKE + α i l ( ω 2 , ω 2 ) α j k * ( ω 1 , ω 1 ) ,
C RA = ( a 2 b 2 ) cos α sin α ( 1 ρ ) Re ( χ x x x x RA ) + a b ( 1 3 ρ ) Im ( χ x x x x RA )
C OKE = 2 ( a 2 b 2 ) cos α sin α Re ( χ el OKE + χ nu OKE ) .
S ( τ ) = d t { C OKE + C RA ( ω 2 ( t τ ) , ω 1 ( t ) ) } f 1 ( t ) 2 f 2 ( t τ ) 2 .
χ x x x x RA ( ω 2 , ω 1 , ω 1 , ω 2 ) = α x x 2 Γ ω RA + i Γ ω 2 + ω 1 χ x x x x RA ( ω 2 ω 1 ) ,
S ( τ ) = π t w 2 exp ( t 2 2 t w 2 ) [ cos φ χ OKE + A 2 2 cos φ ( 1 ρ ) ( Ω RA + s τ ) Γ ( Ω RA + s τ ) 2 + Γ 2 A 2 2 sin φ ( 1 3 ρ ) Γ 2 ( Ω RA + s τ ) 2 + Γ 2 ] ,

Metrics