Abstract

Output powers as high as 300mW were obtained at 1925nm in the cw regime with a Tm laser operating at room temperature, either with Ti-sapphire or diode laser pumping, using a new single crystal of NaGd(WO4)2 grown by the Czochralski method and doped with 5mol.% of Tm3+ in the melt. This crystal belongs to the I4¯ tetragonal space group and exhibits a locally disordered structure due to the random occupancy of the same lattice sites by Na and Gd (or Tm) ions. The local disorder results in large bandwidths of the Tm3+ optical transitions (e.g., FWHM60cm1 at 5K for the H63F43 transition involved in the laser emission), which allows one to obtain one of the broadest laser tunability ranges, from 1813 to 2025nm(17THz), achieved with a Tm3+-doped crystalline material. A detailed characterization of the Tm3+ optical spectroscopy in this novel host was performed at 5 and 300K.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
    [CrossRef]
  2. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
    [CrossRef]
  3. W. Koechner, Solid-State Laser Engineering (Springer, 1996).
  4. R. C. Stoneman and L. Esterowitz, 'Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,' Opt. Lett. 15, 486-488 (1990).
    [CrossRef] [PubMed]
  5. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
    [CrossRef]
  6. P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.
  7. G. E. Peterson and P. M. Bridenbaugh, 'Laser oscillation at 1.06μm in the series Na0.5Gd0.5xNdxWO4,' Appl. Phys. Lett. 4, 173-175 (1964).
    [CrossRef]
  8. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).
  9. M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
    [CrossRef] [PubMed]
  10. L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
    [CrossRef]
  11. X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.
  12. L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
    [CrossRef]
  13. E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
    [CrossRef]
  14. E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].
  15. P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
    [CrossRef]
  16. C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
    [CrossRef]
  17. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
    [CrossRef]
  18. D. E. McCumber, 'Einstein relations connecting broadband emission and absorption spectra,' Phys. Rev. 136, A954-A957 (1964).
    [CrossRef]
  19. C. Görller-Walrand and K. Binnemans, 'Spectral intensities of f-f transitions,' in Handbook on the Physics and Chemistry of Rare Earths, K.A.Gschneider, Jr., and L.Eyring, eds. (Elsevier Science, 1998), Vol. 25, p. 101.
    [CrossRef]
  20. W. T. Carnall, P. R. Fields, and K. Rajnak, 'Electronic energy levels in trivalent lanthanide aquo ions. I: Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,' J. Chem. Phys. 49, 4424-4442 (1968).
    [CrossRef]
  21. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
    [CrossRef]
  22. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).
  23. C. Lim and Y. Izawa, 'Modeling of end-pumped cw quasi-three-level lasers,' IEEE J. Quantum Electron. 38, 306-311 (2002).
    [CrossRef]
  24. A. A. Kaminskii, 'Modern developments in the physics of crystalline laser materials,' Phys. Status Solidi A 200, 215-296 (2003).
    [CrossRef]

2006

L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
[CrossRef]

2005

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

2004

2003

A. A. Kaminskii, 'Modern developments in the physics of crystalline laser materials,' Phys. Status Solidi A 200, 215-296 (2003).
[CrossRef]

2002

C. Lim and Y. Izawa, 'Modeling of end-pumped cw quasi-three-level lasers,' IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

1998

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

1997

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

1994

L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
[CrossRef]

1992

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

1990

1984

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

1971

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, 'Electronic energy levels in trivalent lanthanide aquo ions. I: Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,' J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

1964

D. E. McCumber, 'Einstein relations connecting broadband emission and absorption spectra,' Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

G. E. Peterson and P. M. Bridenbaugh, 'Laser oscillation at 1.06μm in the series Na0.5Gd0.5xNdxWO4,' Appl. Phys. Lett. 4, 173-175 (1964).
[CrossRef]

Abraham, M. M.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Ackermann, L.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Aguiló, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Allik, T. H.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Becker, P. C.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Bettinelli, M.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Binnemans, K.

C. Görller-Walrand and K. Binnemans, 'Spectral intensities of f-f transitions,' in Handbook on the Physics and Chemistry of Rare Earths, K.A.Gschneider, Jr., and L.Eyring, eds. (Elsevier Science, 1998), Vol. 25, p. 101.
[CrossRef]

Boatner, L. A.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Bottrill, L.

L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
[CrossRef]

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Bridenbaugh, P. M.

G. E. Peterson and P. M. Bridenbaugh, 'Laser oscillation at 1.06μm in the series Na0.5Gd0.5xNdxWO4,' Appl. Phys. Lett. 4, 173-175 (1964).
[CrossRef]

Camy, P.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, 'Electronic energy levels in trivalent lanthanide aquo ions. I: Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,' J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Cascales, C.

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Cavalli, E.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Conway, J. G.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Cornacchia, P.

P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.

Díaz, F.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Dupré, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Edelstein, N.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Esteban-Betegón, F.

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Esterowitz, L.

Fagundes-Peters, D.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, 'Electronic energy levels in trivalent lanthanide aquo ions. I: Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,' J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Galán, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

García-Solé, J.

L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Giesen, A.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Görller-Walrand, C.

C. Görller-Walrand and K. Binnemans, 'Spectral intensities of f-f transitions,' in Handbook on the Physics and Chemistry of Rare Earths, K.A.Gschneider, Jr., and L.Eyring, eds. (Elsevier Science, 1998), Vol. 25, p. 101.
[CrossRef]

Griebner, U.

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Griebrier, U.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Gruber, J. B.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Hanuza, J.

L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Hayhurst, T.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Huber, G.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Ivanova, M. M.

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

Izawa, Y.

C. Lim and Y. Izawa, 'Modeling of end-pumped cw quasi-three-level lasers,' IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

Jaque, D.

L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Jia, G.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

Johannsen, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, 'Modern developments in the physics of crystalline laser materials,' Phys. Status Solidi A 200, 215-296 (2003).
[CrossRef]

Karpov, V. N.

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1996).

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Kutovoi, S.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Li, J.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

Lim, C.

C. Lim and Y. Izawa, 'Modeling of end-pumped cw quasi-three-level lasers,' IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

Liu, J.

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Lu, X.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

Macalik, L.

L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Mateos, X.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

McCumber, D. E.

D. E. McCumber, 'Einstein relations connecting broadband emission and absorption spectra,' Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Menard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Méndez-Blas, A.

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

Merkle, L. D.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Meschini, C.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Moncorge, R.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Mond, M.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Pankratov, M. M.

L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
[CrossRef]

Parisi, D.

P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Perrault, D. F.

L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
[CrossRef]

Petermann, K.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Peters, R.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Peters, V.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Peterson, G. E.

G. E. Peterson and P. M. Bridenbaugh, 'Laser oscillation at 1.06μm in the series Na0.5Gd0.5xNdxWO4,' Appl. Phys. Lett. 4, 173-175 (1964).
[CrossRef]

Petrov, V.

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Poe, D. S.

L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
[CrossRef]

Pujol, M. C.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, 'Electronic energy levels in trivalent lanthanide aquo ions. I: Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,' J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Rico, M.

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Rode, E. Ya.

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

Romero, J. J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Rytz, D.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Sani, E.

P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.

Seltzer, M. D.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Serrano, M. D.

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Shalimoff, G.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

Speiser, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

Stevens, S. B.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Stoneman, R. C.

Toncelli, A.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.

Tonelli, M.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.

Tu, C.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

Volkov, V.

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

Webber, M. E.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Wu, B.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

You, Z.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

Zaldo, C.

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

M. Rico, J. Liu, U. Griebner, V. Petrov, M. D. Serrano, F. Esteban-Betegón, C. Cascales, and C. Zaldo, 'Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2,' Opt. Express 12, 5362-5367 (2004).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

Zhu, Z.

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

Appl. Phys. B

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, 'Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0μm,' Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Appl. Phys. Lett.

G. E. Peterson and P. M. Bridenbaugh, 'Laser oscillation at 1.06μm in the series Na0.5Gd0.5xNdxWO4,' Appl. Phys. Lett. 4, 173-175 (1964).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, 'Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,' IEEE J. Quantum Electron. 28, 2619-2630 (1992).
[CrossRef]

C. Lim and Y. Izawa, 'Modeling of end-pumped cw quasi-three-level lasers,' IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

J. Appl. Phys.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, 'Spectroscopic analysis of Tm3+:NaLa(MoO4)2,' J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

J. Chem. Phys.

P. C. Becker, T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner, and M. M. Abraham, 'Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4,' J. Chem. Phys. 81, 2872-2878 (1984).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, 'Electronic energy levels in trivalent lanthanide aquo ions. I: Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,' J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

J. Cryst. Growth

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, 'Highly Yb-doped oxides for thin-disc lasers,' J. Cryst. Growth 275, 135-140 (2005).
[CrossRef]

J. Phys. Chem. Solids

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, 'Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,' J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Opt. Commun.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorge, 'Tm3+:CaF2 for 1.9μm laser operation,' Opt. Commun. 236, 395-402 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

L. Macalik, J. Hanuza, D. Jaque, and J. García-Solé, 'Spectroscopic characterization of the Tm3+ doped KLa(WO4)2 single crystal,' Opt. Mater. 28, 980-987 (2006).
[CrossRef]

C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, 'The optical spectroscopy of lanthanides R3+ in ABi(XO4)2(A=Li,Na;X=Mo,W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder,' Opt. Mater. 27, 1672-1680 (2005).
[CrossRef]

Phys. Rev.

D. E. McCumber, 'Einstein relations connecting broadband emission and absorption spectra,' Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Phys. Status Solidi A

A. A. Kaminskii, 'Modern developments in the physics of crystalline laser materials,' Phys. Status Solidi A 200, 215-296 (2003).
[CrossRef]

Proc. SPIE

L. Bottrill, D. F. Perrault, Jr., M. M. Pankratov, and D. S. Poe, 'Thulium:YAG laser applications for Stapes surgery: preliminary observations,' in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE 2128, 23-30 (1994).
[CrossRef]

Russ. J. Inorg. Chem.

E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, 'Influence of the rare-earth ion on the phases formed in theNa2WO4-R2(WO4)3 systems (where R is a rare-earth element),' Russ. J. Inorg. Chem. 16, 905-908 (1971) E. Ya. Rode, V. N. Karpov, and M. M. Ivanova,[translated from Z. Neorg. Khim. 16, 1713-1716 (1971)].

Other

C. Görller-Walrand and K. Binnemans, 'Spectral intensities of f-f transitions,' in Handbook on the Physics and Chemistry of Rare Earths, K.A.Gschneider, Jr., and L.Eyring, eds. (Elsevier Science, 1998), Vol. 25, p. 101.
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, 'Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,' IEEE J. Quantum Electron. 42, 1008-1015 (2006).

X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, 'Optical spectra of Tm3+ doped NaBi(WO4)2,' submitted to Opt. Mater.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebrier, and V. Petrov, 'Structural, spectroscopic, and tunable laser performance of Yb3+-doped NaGd(WO4)2,' Phys. Rev. B (to be published).

P. Cornacchia, D. Parisi, E. Sani, A. Toncelli, and M. Tonelli, 'Comparative analysis of the 2μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment,' Advanced Solid-State Photonics, C.Denman and I.Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 219-223.

W. Koechner, Solid-State Laser Engineering (Springer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Low-temperature ( 5 K ) polarized (α, σ, and π) OA coefficient α and PL of Tm : NaGdW . The PL was excited at 792.1 and 793.5 nm for the σ and π spectra, respectively.

Fig. 2
Fig. 2

Ground-state H 4 3 absorption cross sections σ GSA of Tm : NaGdW at 300 K for α (dashed curve), σ and π (solid curves) configurations. The inset shows an 3 mm × 3 mm × 3 mm sample used in the laser experiments.

Fig. 3
Fig. 3

H 6 3 F 4 3 ground-state absorption cross section (dashed curves) and emission cross section at 300 K calculated by the reciprocity method (solid curves) of Tm : NaGdW . The experimental PL excited at 795 nm (points) is shown for comparison. (a) σ configuration, (b) π configuration.

Fig. 4
Fig. 4

F 4 3 H 6 3 gain cross section σ GAIN ( λ ) of Tm : NaGdW for several inversion rates β.

Fig. 5
Fig. 5

Fluorescence lifetime of the metastable F 4 3 level of Tm 3 + in NaGd ( WO 4 ) 2 measured at room temperature by the pinhole method.

Fig. 6
Fig. 6

Cavity setup of the Tm : NaGdW laser with Ti:sapphire laser pumping. L, antireflection-coated focusing lens with f = 70 mm ; M1, plane total reflector; M2–M3, mirrors with radius of curvature of 100 mm ; M4, plane output coupler. For tuning experiments, a single-plate birefringent filter (Lyot filter) was introduced into the cavity under a Brewster’s angle.

Fig. 7
Fig. 7

Output power versus absorbed pump power of the Tm : NaGdW laser obtained with Ti:sapphire laser pumping for different transmission T OC of the output coupler and (a) σ and (b) π polarization. The symbols show the experimental data and the linear fits (lines) were used to estimate the slope efficiency η and laser thresholds.

Fig. 8
Fig. 8

Single-pass absorption of Tm : NaGdW under laser operation and without lasing versus incident pump power when pumped by the Ti:sapphire laser.

Fig. 9
Fig. 9

Output power of the Tm : NaGdW laser versus wavelength for an incident power of 1.54 W of the Ti:sapphire pump laser and T OC = 3 % .

Fig. 10
Fig. 10

Cavity setup of the laser diode- (LD-) pumped Tm : NaGdW laser. CL, collimating lens system; FL, focusing lens system; M1, plane total reflector; M2, output coupler with radius of curvature of 50 mm . Empty cavity length is 49 mm .

Fig. 11
Fig. 11

Output power of the cw Tm : NaGdW laser under diode laser pumping versus absorbed pump power. The linear fits (lines) were used to calculate the slope efficiencies η corresponding to the three output couplers used. The oscillation wavelengths refer to operation near the threshold.

Tables (5)

Tables Icon

Table 1 Observed Stark Energy Levels (in cm 1 ) of Tm 3 + in NaGdW , Number of Irreducible Representations ( Γ 1 , Γ 2 , or Γ 3 , 4 ) Expected for Each L J 2 S + 1 Multiplet in the S 4 Symmetry a

Tables Icon

Table 2 Polarization Rules for the S 4 Site Symmetry and J Whole a

Tables Icon

Table 3 Average Wavelength λ ¯ , Integrated OA Cross Sections Γ [ Tm ] , Averaged ED Oscillator Strength f ¯ ED , exp , and Calculated ED Oscillator Strength f ED , cal for L J 2 S + 1 Multiplets of Tm 3 + in NaGd ( WO 4 ) 2

Tables Icon

Table 4 ED and MD Transition Probabilities A ED and A MD ; Branching Ratios β i j and Radiative Lifetimes τ rad of Tm 3 + in NaGd ( WO 4 ) 2 Calculated from the Ω 2 = 9.48 × 10 20 cm 2 , Ω 4 = 1.28 × 10 20 cm 2 , Ω 6 = 1.36 × 10 20 cm 2 Set a

Tables Icon

Table 5 Slope Efficiency η and Threshold P thr Calculated with Respect to the Absorbed Pump Power and Laser Wavelength λ L for Several Transmission Values T OC of the Output Coupler Obtained for Room-Temperature cw Operation of the Tm : NaGdW Laser under Ti:sapphire Laser Pumping

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ EMI = σ GSA Z l Z u e ( E z l h v ) k B T ,
τ rad = 1 8 π n 2 c [ σ ( λ ) λ 4 d λ ] 1 .

Metrics