Abstract

Circular dichroism contains rich information on the conformation of molecules and, in particular, of biomolecules, and measuring its variation in a pump–probe experiment is very promising but also very challenging. We propose a new technique to measure pump-induced variation of the circular dichroism, which is based on the measurement of the probe ellipticity and its variation with the pump. This technique has the advantage that it does not require modulation of the probe polarization, which allows modulation of the pump intensity. We show theoretically and demonstrate experimentally that this technique is very sensitive and user friendly. We also show that it can be used to measure pump-induced change in the optical rotation, allowing for a complete characterization of pump-induced optical activity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
    [CrossRef]
  2. X. Xie and J. D. Simon, "Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO," J. Am. Chem. Soc. 112, 7802-7803 (1990).
    [CrossRef]
  3. T. Dartigalongue and F. Hache, "Observation of sub-100ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism," Chem. Phys. Lett. 415, 313-316 (2005).
    [CrossRef]
  4. T. Dartigalongue and F. Hache, "Classical calculation of myoglobin circular dichroism spectrum: simulation of a time-resolved experiment," J. Chem. Phys. 123, 184901 (2005).
    [CrossRef] [PubMed]
  5. S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
    [CrossRef]
  6. T. Dartigalongue and F. Hache, "Precise alignment of a longitudinal Pockels cell for time-resolved circular dichroism experiments," J. Opt. Soc. Am. B 20, 1780-1787 (2003).
    [CrossRef]
  7. N. Sreerama and R. W. Woody, "Circular dichroism of peptides and proteins," in Circular Dichroism. Principles and Applications, 2nd ed., N.Berova, K.Nakanishi, and R.W.Woody, eds. (Wiley-VCH, 2000), pp. 601-620.
  8. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  9. X. Xie and J. D. Simon, "Picosecond circular dichroism spectroscopy: a Jones matrix analysis," J. Opt. Soc. Am. B 7, 1673-1684 (1990).
    [CrossRef]
  10. H. Graener, G. Seifert, and A. Laubereau, "Direct observation of rotational relaxation times by time-resolved infrared spectroscopy," Chem. Phys. Lett. 172, 435-439 (1990).
    [CrossRef]
  11. J. W. Petrich, C. Poyart, and J. L. Martin, "Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin and protoheme," Biochemistry 27, 4049-4060 (1988).
    [CrossRef] [PubMed]
  12. S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
    [CrossRef] [PubMed]
  13. D. W. Urry, "The heme chromophore in the ultraviolet," J. Biol. Chem. 242, 4441-4448 (1967).
    [PubMed]

2005 (2)

T. Dartigalongue and F. Hache, "Observation of sub-100ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism," Chem. Phys. Lett. 415, 313-316 (2005).
[CrossRef]

T. Dartigalongue and F. Hache, "Classical calculation of myoglobin circular dichroism spectrum: simulation of a time-resolved experiment," J. Chem. Phys. 123, 184901 (2005).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
[CrossRef] [PubMed]

1991 (1)

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

1990 (3)

X. Xie and J. D. Simon, "Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO," J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

X. Xie and J. D. Simon, "Picosecond circular dichroism spectroscopy: a Jones matrix analysis," J. Opt. Soc. Am. B 7, 1673-1684 (1990).
[CrossRef]

H. Graener, G. Seifert, and A. Laubereau, "Direct observation of rotational relaxation times by time-resolved infrared spectroscopy," Chem. Phys. Lett. 172, 435-439 (1990).
[CrossRef]

1988 (1)

J. W. Petrich, C. Poyart, and J. L. Martin, "Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin and protoheme," Biochemistry 27, 4049-4060 (1988).
[CrossRef] [PubMed]

1985 (1)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

1967 (1)

D. W. Urry, "The heme chromophore in the ultraviolet," J. Biol. Chem. 242, 4441-4448 (1967).
[PubMed]

Bjorling, S. C.

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).

Dartigalongue, T.

T. Dartigalongue and F. Hache, "Observation of sub-100ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism," Chem. Phys. Lett. 415, 313-316 (2005).
[CrossRef]

T. Dartigalongue and F. Hache, "Classical calculation of myoglobin circular dichroism spectrum: simulation of a time-resolved experiment," J. Chem. Phys. 123, 184901 (2005).
[CrossRef] [PubMed]

T. Dartigalongue and F. Hache, "Precise alignment of a longitudinal Pockels cell for time-resolved circular dichroism experiments," J. Opt. Soc. Am. B 20, 1780-1787 (2003).
[CrossRef]

Einterz, C. M.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Franzen, S.

S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
[CrossRef] [PubMed]

Golbeck, R. A.

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

Graener, H.

H. Graener, G. Seifert, and A. Laubereau, "Direct observation of rotational relaxation times by time-resolved infrared spectroscopy," Chem. Phys. Lett. 172, 435-439 (1990).
[CrossRef]

Hache, F.

T. Dartigalongue and F. Hache, "Classical calculation of myoglobin circular dichroism spectrum: simulation of a time-resolved experiment," J. Chem. Phys. 123, 184901 (2005).
[CrossRef] [PubMed]

T. Dartigalongue and F. Hache, "Observation of sub-100ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism," Chem. Phys. Lett. 415, 313-316 (2005).
[CrossRef]

T. Dartigalongue and F. Hache, "Precise alignment of a longitudinal Pockels cell for time-resolved circular dichroism experiments," J. Opt. Soc. Am. B 20, 1780-1787 (2003).
[CrossRef]

Kiger, L.

S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
[CrossRef] [PubMed]

Kliger, D. S.

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Kuntz, I. D.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Laubereau, A.

H. Graener, G. Seifert, and A. Laubereau, "Direct observation of rotational relaxation times by time-resolved infrared spectroscopy," Chem. Phys. Lett. 172, 435-439 (1990).
[CrossRef]

Lewis, J. W.

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Martin, J. L.

J. W. Petrich, C. Poyart, and J. L. Martin, "Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin and protoheme," Biochemistry 27, 4049-4060 (1988).
[CrossRef] [PubMed]

Martin, J.-L.

S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
[CrossRef] [PubMed]

Milder, S. J.

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Petrich, J. W.

J. W. Petrich, C. Poyart, and J. L. Martin, "Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin and protoheme," Biochemistry 27, 4049-4060 (1988).
[CrossRef] [PubMed]

Poyart, C.

S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
[CrossRef] [PubMed]

J. W. Petrich, C. Poyart, and J. L. Martin, "Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin and protoheme," Biochemistry 27, 4049-4060 (1988).
[CrossRef] [PubMed]

Randall, C. A.

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

Seifert, G.

H. Graener, G. Seifert, and A. Laubereau, "Direct observation of rotational relaxation times by time-resolved infrared spectroscopy," Chem. Phys. Lett. 172, 435-439 (1990).
[CrossRef]

Simon, J. D.

X. Xie and J. D. Simon, "Picosecond circular dichroism spectroscopy: a Jones matrix analysis," J. Opt. Soc. Am. B 7, 1673-1684 (1990).
[CrossRef]

X. Xie and J. D. Simon, "Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO," J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

Sreerama, N.

N. Sreerama and R. W. Woody, "Circular dichroism of peptides and proteins," in Circular Dichroism. Principles and Applications, 2nd ed., N.Berova, K.Nakanishi, and R.W.Woody, eds. (Wiley-VCH, 2000), pp. 601-620.

Tilton, R. F.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Urry, D. W.

D. W. Urry, "The heme chromophore in the ultraviolet," J. Biol. Chem. 242, 4441-4448 (1967).
[PubMed]

Woody, R. W.

N. Sreerama and R. W. Woody, "Circular dichroism of peptides and proteins," in Circular Dichroism. Principles and Applications, 2nd ed., N.Berova, K.Nakanishi, and R.W.Woody, eds. (Wiley-VCH, 2000), pp. 601-620.

Xie, X.

X. Xie and J. D. Simon, "Picosecond circular dichroism spectroscopy: a Jones matrix analysis," J. Opt. Soc. Am. B 7, 1673-1684 (1990).
[CrossRef]

X. Xie and J. D. Simon, "Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO," J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

Biochemistry (1)

J. W. Petrich, C. Poyart, and J. L. Martin, "Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin and protoheme," Biochemistry 27, 4049-4060 (1988).
[CrossRef] [PubMed]

Biophys. J. (1)

S. Franzen, L. Kiger, C. Poyart, and J.-L. Martin, "Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer," Biophys. J. 80, 2372-2385 (2001).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

T. Dartigalongue and F. Hache, "Observation of sub-100ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism," Chem. Phys. Lett. 415, 313-316 (2005).
[CrossRef]

H. Graener, G. Seifert, and A. Laubereau, "Direct observation of rotational relaxation times by time-resolved infrared spectroscopy," Chem. Phys. Lett. 172, 435-439 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Xie and J. D. Simon, "Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO," J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

J. Biol. Chem. (1)

D. W. Urry, "The heme chromophore in the ultraviolet," J. Biol. Chem. 242, 4441-4448 (1967).
[PubMed]

J. Chem. Phys. (1)

T. Dartigalongue and F. Hache, "Classical calculation of myoglobin circular dichroism spectrum: simulation of a time-resolved experiment," J. Chem. Phys. 123, 184901 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (2)

S. C. Bjorling, R. A. Golbeck, S. J. Milder, C. A. Randall, J. W. Lewis, and D. S. Kliger, "Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism," J. Phys. Chem. 95, 4685-4694 (1991).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, "New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin," J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Other (2)

N. Sreerama and R. W. Woody, "Circular dichroism of peptides and proteins," in Circular Dichroism. Principles and Applications, 2nd ed., N.Berova, K.Nakanishi, and R.W.Woody, eds. (Wiley-VCH, 2000), pp. 601-620.

C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the experimental setup. P, polarizer; A, analyzer; BS, Babinet–Soleil compensator; PMT, photomultiptier tube; LI, lock-in amplifier; C, mechanical chopper.

Fig. 2
Fig. 2

PM (squares) and LI (dots) signals in arbitrary units as a function of the BS retardation (in radian) for the Δ and Λ enantiomers and for the racemic mixture. The sign of the LI curves has been changed to allow for an easier comparison of the parabola.

Fig. 3
Fig. 3

CD spectra for MbCO (solid curve) and Mb (dashed curve).

Fig. 4
Fig. 4

Pump-induced absorption change (squares) and CD change (dots) in MbCO at 265 nm as a function of the pump–probe delay. The sign of Δ α has been changed for the sake of clarity. The insets show the raw PM and LI data for a negative and a positive delay.

Fig. 5
Fig. 5

Time-resolved CD experiment in MbCO at 265 nm obtained by modulation of the probe polarization by a Pockels cell. Average of 20 curves and smoothing have been carried out. The inset shows the data prior to smoothing.

Fig. 6
Fig. 6

Pump-induced CD change around the zero delay. The inset shows three characteristic raw data (negative, zero, and positive delays).

Fig. 7
Fig. 7

Pump-induced OR change in MbCO at 265 nm as a function of the pump–probe delay.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E in = E 0 [ 1 0 ] .
E out = M Analyzer M BS M Sample E in .
δ = 2 π n L n R λ L
η = ( α L α R ) L .
M Sample = e ( α L 2 ) [ cosh ( η 4 + i δ 2 ) i sinh ( η 4 + i δ 2 ) i sinh ( η 4 + i δ 2 ) cosh ( η 4 + i δ 2 ) ] ,
M BS = [ cos X i sin X i sin X cos X ] .
M Analyzer = [ sin 2 ε sin ε cos ε sin ε cos ε cos 2 ε ] .
E out = E 0 e ( α L 2 ) [ 0 ( ε δ 2 ) + i ( X + η 4 ) ] ,
I out = e α L [ ( ε δ 2 ) 2 + ( X + η 4 ) 2 ] .
I without pump = e α 0 L [ ( ε δ 0 2 ) 2 + ( X + η 0 4 ) 2 ] e α 0 L [ ρ 2 + Y 2 ] .
I with pump = e α 0 L e Δ α L [ ( ρ Δ δ 2 ) 2 + ( Y + Δ η 4 ) 2 ] .
PM = e α 0 L 2 [ ρ 2 ( e Δ α L + 1 ) ρ Δ δ e Δ α L + 1 4 Δ δ 2 e Δ α L + Y 2 ( e Δ α L + 1 ) + 1 2 Y Δ η e Δ α L + 1 16 Δ η 2 e Δ α L ] ,
LI = e α 0 L [ ρ 2 ( e Δ α L 1 ) ρ Δ δ e Δ α L + 1 4 Δ δ 2 e Δ α L + Y 2 ( e Δ α L 1 ) + 1 2 Y Δ η e Δ α L + 1 16 Δ η 2 e Δ α L ] .
PM = e α 0 L 2 [ Y 2 ( e Δ α L + 1 ) + 1 2 Y Δ η e Δ α L + K 1 ] ,
LI = e α 0 L [ Y 2 ( e Δ α L 1 ) + 1 2 Y Δ η e Δ α L + K 2 ] .
Z = Y + Δ η e Δ α L 4 ( e Δ α L + 1 ) .
PM = Z 2 + K 3 ,
LI = 2 e Δ α L 1 e Δ α L + 1 Z 2 + Δ η 2 e Δ α L ( e Δ α L + 1 ) 2 Z + K 4 .
L I = Δ α L Z 2 + 1 2 Δ η Z + K 8 ,
M LB = [ e i b cos 2 θ + e i b sin 2 θ i sin b sin 2 θ i sin b sin 2 θ e i b cos 2 θ + e i b sin 2 θ ] ,
[ 1 2 i b θ 2 i b θ 1 ] ,
E LB out = [ 1 ε + i ( X + 2 b θ ) ] .
E LD out = [ 1 ( ε + 2 β θ ) + i X ] ,

Metrics