Abstract

We present a microwave frequency standard based on coherent population trapping (CPT) in the Rb87D1 line. The CPT spectrum is obtained using two Raman lasers with a 6.8GHz frequency offset by injection locking of a master laser to a slave laser. We have constructed an atomic clock employing a 5cm long Rb vapor cell confined with 6.67kPa neon buffer gas at 70°C. Using this system, we improve the CPT contrast through the elimination of undesired off-resonant fields created by the direct modulation method. We measured the frequency shift of the CPT signal as a function of the temperature of the Rb cell and estimated it to be approximately 1.3×109K. The frequency of a 10MHz crystal oscillator has been stabilized to the CPT spectrum between the two ground states in Rb87. The relative frequency stability is approximately 2.3×1012 for an average time of 68s.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
    [CrossRef]
  2. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
    [CrossRef]
  3. H. R. Gray, R. M. Whitley, and C. R. Stroud, Jr., "Coherent trapping of atomic populations," Opt. Lett. 3, 218-220 (1978).
    [CrossRef] [PubMed]
  4. C. N. Cohen-Tannoudji, "Manipulating atoms with photons," Rev. Mod. Phys. 70, 707-719 (1998).
    [CrossRef]
  5. H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
    [CrossRef]
  6. M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
    [CrossRef] [PubMed]
  7. J. Vanier, "Atomic clocks based on coherent population trapping: a review," Appl. Phys. B 81, 421-442 (2005).
    [CrossRef]
  8. J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
    [CrossRef]
  9. M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, "All-optical atomic clock based on coherent population trapping in Rb85," J. Opt. Soc. Am. B 20, 273-279 (2003).
    [CrossRef]
  10. J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
    [CrossRef]
  11. D. Phillips, I. Novikova, C. Wang, R. Walsworth, and M. Crescimanno, "Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock," J. Opt. Soc. Am. B 22, 305-310 (2005).
    [CrossRef]
  12. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, "Coherent population trapping resonances in thermal Rb85 vapor: D1 versus D2 line excitation," Opt. Lett. 27, 1472-1475 (2002).
    [CrossRef]
  13. S. E. Park, T. Y. Kwon, and H. S. Lee, "Production of Raman laser beams using injection-locking technique," IEEE Trans. Instrum. Meas. 52, 277-279 (2003).
    [CrossRef]
  14. Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
    [CrossRef]
  15. P. Valente, H. Failache, and A. Lezama, "Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances," Phys. Rev. A 65, 023814 (2002).
    [CrossRef]
  16. S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
    [CrossRef]
  17. J. Vanier and C. Audoin, Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
    [CrossRef]
  18. M. Zhu and L. S. Cutler, "Theoretical and experimental study of light shift in a CPT-based Rb vapor cell frequency standard," in Proceedings of the 32nd Annual Precise Time and Time Interval Meeting, Reston, Va., 2000, p. 23.
  19. F. Levi, A. Godone, and J. Vanier, "The light shift effect in the coherent population trapping cesium maser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 466-470 (2000).
    [CrossRef]
  20. R. Wynands and A. Nagel, "Precision spectroscopy with coherent dark states," Appl. Phys. B 68, 1-25 (1999).
    [CrossRef]

2005

2004

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
[CrossRef]

2003

S. E. Park, T. Y. Kwon, and H. S. Lee, "Production of Raman laser beams using injection-locking technique," IEEE Trans. Instrum. Meas. 52, 277-279 (2003).
[CrossRef]

M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, "All-optical atomic clock based on coherent population trapping in Rb85," J. Opt. Soc. Am. B 20, 273-279 (2003).
[CrossRef]

J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

2002

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, "Coherent population trapping resonances in thermal Rb85 vapor: D1 versus D2 line excitation," Opt. Lett. 27, 1472-1475 (2002).
[CrossRef]

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

P. Valente, H. Failache, and A. Lezama, "Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances," Phys. Rev. A 65, 023814 (2002).
[CrossRef]

2000

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

F. Levi, A. Godone, and J. Vanier, "The light shift effect in the coherent population trapping cesium maser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 466-470 (2000).
[CrossRef]

1999

R. Wynands and A. Nagel, "Precision spectroscopy with coherent dark states," Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

1998

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

C. N. Cohen-Tannoudji, "Manipulating atoms with photons," Rev. Mod. Phys. 70, 707-719 (1998).
[CrossRef]

1994

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

1978

1976

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

1975

Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
[CrossRef]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Audoin, C.

J. Vanier and C. Audoin, Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
[CrossRef]

Cho, H.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
[CrossRef]

Choe, Y. S.

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Cohen-Tannoudji, C. N.

C. N. Cohen-Tannoudji, "Manipulating atoms with photons," Rev. Mod. Phys. 70, 707-719 (1998).
[CrossRef]

Crescimanno, M.

Cutler, L. S.

M. Zhu and L. S. Cutler, "Theoretical and experimental study of light shift in a CPT-based Rb vapor cell frequency standard," in Proceedings of the 32nd Annual Precise Time and Time Interval Meeting, Reston, Va., 2000, p. 23.

Delaney, M.

J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Failache, H.

P. Valente, H. Failache, and A. Lezama, "Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances," Phys. Rev. A 65, 023814 (2002).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Gallagher, A.

Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
[CrossRef]

Godone, A.

F. Levi, A. Godone, and J. Vanier, "The light shift effect in the coherent population trapping cesium maser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 466-470 (2000).
[CrossRef]

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Gray, H. R.

Hollberg, L.

Ikonen, E.

Janssen, D.

J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Kim, B. S.

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Kim, H. A.

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Kim, J. B.

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Kim, K. D.

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Kitching, J.

Knappe, S.

Kwon, T. Y.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
[CrossRef]

S. E. Park, T. Y. Kwon, and H. S. Lee, "Production of Raman laser beams using injection-locking technique," IEEE Trans. Instrum. Meas. 52, 277-279 (2003).
[CrossRef]

Lee, H. S.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
[CrossRef]

S. E. Park, T. Y. Kwon, and H. S. Lee, "Production of Raman laser beams using injection-locking technique," IEEE Trans. Instrum. Meas. 52, 277-279 (2003).
[CrossRef]

Levi, F.

F. Levi, A. Godone, and J. Vanier, "The light shift effect in the coherent population trapping cesium maser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 466-470 (2000).
[CrossRef]

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

Levine, M.

J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

Lezama, A.

P. Valente, H. Failache, and A. Lezama, "Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances," Phys. Rev. A 65, 023814 (2002).
[CrossRef]

Lindvall, T.

Merimaa, M.

Moi, L.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Moon, H. S.

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Nagel, A.

R. Wynands and A. Nagel, "Precision spectroscopy with coherent dark states," Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

Novikova, I.

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Ottinger, Ch.

Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
[CrossRef]

Park, S. E.

S. E. Park, T. Y. Kwon, and H. S. Lee, "Production of Raman laser beams using injection-locking technique," IEEE Trans. Instrum. Meas. 52, 277-279 (2003).
[CrossRef]

Park, S. J.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
[CrossRef]

Phillips, D.

Scheps, R.

Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
[CrossRef]

Scully, M. O.

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Stähler, M.

Stroud, C. R.

Taichenachev, A.

Tittonen, I.

Valente, P.

P. Valente, H. Failache, and A. Lezama, "Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances," Phys. Rev. A 65, 023814 (2002).
[CrossRef]

Vanier, J.

J. Vanier, "Atomic clocks based on coherent population trapping: a review," Appl. Phys. B 81, 421-442 (2005).
[CrossRef]

J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

F. Levi, A. Godone, and J. Vanier, "The light shift effect in the coherent population trapping cesium maser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 466-470 (2000).
[CrossRef]

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

J. Vanier and C. Audoin, Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
[CrossRef]

Walsworth, R.

Wang, C.

Whitley, R. M.

Wynands, R.

York, G. W.

Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
[CrossRef]

Yudin, V.

Zhu, M.

M. Zhu and L. S. Cutler, "Theoretical and experimental study of light shift in a CPT-based Rb vapor cell frequency standard," in Proceedings of the 32nd Annual Precise Time and Time Interval Meeting, Reston, Va., 2000, p. 23.

Appl. Phys. B

J. Vanier, "Atomic clocks based on coherent population trapping: a review," Appl. Phys. B 81, 421-442 (2005).
[CrossRef]

R. Wynands and A. Nagel, "Precision spectroscopy with coherent dark states," Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

Appl. Phys. Lett.

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Vanier, M. Levine, D. Janssen, and M. Delaney, "On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards," IEEE Trans. Instrum. Meas. 52, 822-831 (2003).
[CrossRef]

S. E. Park, T. Y. Kwon, and H. S. Lee, "Production of Raman laser beams using injection-locking technique," IEEE Trans. Instrum. Meas. 52, 277-279 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

F. Levi, A. Godone, and J. Vanier, "The light shift effect in the coherent population trapping cesium maser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 466-470 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys. Part 1

H. S. Moon, Y. S. Choe, H. A. Kim, B. S. Kim, K. D. Kim, and J. B. Kim, "Amplification without inversion in the four-level N-type of Rb87D1-line," Jpn. J. Appl. Phys. Part 1 39, 301-305 (2000).
[CrossRef]

Nuovo Cimento Soc. Ital. Fis., B

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, "An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour," Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, "Broadening of the Rb resonance lines by the noble gases," Phys. Rev. A 11, 1815-1828 (1975).
[CrossRef]

P. Valente, H. Failache, and A. Lezama, "Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances," Phys. Rev. A 65, 023814 (2002).
[CrossRef]

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, "Transient coherence oscillation induced by a detuned Raman field in a rubidium Lambda system," Phys. Rev. A 69, 023806 (2004).
[CrossRef]

Rev. Mod. Phys.

C. N. Cohen-Tannoudji, "Manipulating atoms with photons," Rev. Mod. Phys. 70, 707-719 (1998).
[CrossRef]

Other

J. Vanier and C. Audoin, Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
[CrossRef]

M. Zhu and L. S. Cutler, "Theoretical and experimental study of light shift in a CPT-based Rb vapor cell frequency standard," in Proceedings of the 32nd Annual Precise Time and Time Interval Meeting, Reston, Va., 2000, p. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy-level diagram of the 5 S 1 2 5 P 1 2 transition of the Rb 87 atom. CPT is accomplished by means of two laser fields applied in a Lambda-type scheme.

Fig. 2
Fig. 2

Experimental setup for a passive frequency standard based on a Lambda-type CPT BS, beam splitter; AP, aperture; PD, photodiode; QWP, quarter-wave plate; HWP, half-wave plate; M, mirror; PBS, polarizing beam splitter; VCO, voltage-controlled oscillator.

Fig. 3
Fig. 3

Typical Lambda-type CPT spectrum of the 5 S 1 2 5 P 1 2 transition of Rb 87 . The linewidth of the CPT spectrum is 111.4 Hz , and the contrast is about 1%.

Fig. 4
Fig. 4

(a) CPT spectral width as a function of laser power at temperature of 70 ° C . (b) The contrast of CPT signals as a function of laser power at temperature of 70 ° C .

Fig. 5
Fig. 5

Frequency shift of the 10 MHz crystal oscillator as a function of the temperature of the Rb cell. The temperature dependence of the Rb cell can be estimated to be about 1.3 × 10 9 K .

Fig. 6
Fig. 6

Fractional frequency stability of the 10 MHz crystal oscillator locked to the CPT resonance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν 1 2 = ( γ + Ω 2 Γ ) π .

Metrics