Abstract

A conventional optical superlens for imaging beyond the diffraction limit produces images only in the near-field zone of the superlens. In contrast, an optical far-field superlens (FSL) device has a remarkable transmission property that leads to a one-to-one relationship between the far-field and the near-field angular spectra. This property makes the device suitable for imaging beyond the diffraction limit from far-field measurement. This specific FSL is composed of a properly designed periodically corrugated metallic slab-based superlens. Through the numerical design and parameter study, we show that the transmission property of this FSL is based on a specific strong-broadband wavenumber excitation of surface-plasmon polaritons supported by the nanostructured metallic grating.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
    [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  4. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  5. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  6. S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).
  7. S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).
  8. V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
    [CrossRef] [PubMed]
  9. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
    [CrossRef] [PubMed]
  10. I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
    [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous couple-wave analysis for surface relief gratings-enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  13. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  14. R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998).
    [CrossRef]
  15. R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
    [CrossRef]
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.
  17. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  18. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  19. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef] [PubMed]
  20. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  21. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
    [CrossRef]
  22. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
    [CrossRef] [PubMed]
  23. D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
    [CrossRef] [PubMed]
  24. P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
    [CrossRef]
  25. Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
    [CrossRef]
  26. N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
    [CrossRef] [PubMed]
  27. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004).
    [CrossRef] [PubMed]
  28. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
    [CrossRef]
  29. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  30. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  31. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]

2005 (7)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

2004 (3)

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

2003 (7)

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
[CrossRef] [PubMed]

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

2002 (3)

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (2)

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

1995 (2)

1972 (1)

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004).
[CrossRef] [PubMed]

Blaikie, R. J.

Cai, W.

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Carminati, R

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Carminati, R.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998).
[CrossRef]

Chettiar, U.

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Davis, C. C.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Drachev, V. P.

Durant, S.

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Elliot, J.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Elliott, J.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Foteinopolou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Gaylord, T. K.

Giannattasio, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.

Grann, E. B.

Greffet, J.-J.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998).
[CrossRef]

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Gryczynski, Z.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Hooper, I. R.

Joannopoulos, J. D.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Johnson, S. G.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Kildishev, A. V.

Lakowicz, J. R.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Lauer, V.

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Liu, Z.

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

Liu, Z. W.

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Lu, W. T.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Luo, C. Y.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Malicka, J.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Melville, D. O.

Moharam, M. G.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Narimanov, E. E.

Neito-Vesperinas, M.

Nieto-Vesperinas, M.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

Nowaczyk, K.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Parimi, P. V.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Pendry, J. B.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

Pommet, D. A.

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Saenz, J. J.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

Sarychev, A. K.

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Sridhar, S.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Vodo, P.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Wurtz, G. A.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Yen, T.-J.

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Yuan, H.-K.

Zayats, A. V.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Appl. Phys. Lett. (2)

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

J. Microsc. (1)

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Nature (London) (1)

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

Phys. Rev. B (4)

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Phys. Rev. Lett. (5)

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
[CrossRef] [PubMed]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmitted properties of (a) a conventional superlens versus (b) a FSL. It is assumed that waves are radiated by an object at z = z 0 . Incident evanescent waves are enhanced in transmission through a conventional superlens (a) and still vanish quickly in the near-field zone, limiting the imaging ability of a superlens to the near field. In contrast, a FSL (b) both enhances and converts the original evanescent waves in propagating waves. In this latter case, incident propagating waves are comparatively transmitted with low amplitude in the far field, and the main contribution to the far-field angular spectrum is due to the incident evanescent waves. Using this property, the near-field angular spectrum can be retrieved from the measurement of the far-field angular spectrum.

Fig. 2
Fig. 2

Final design of a silver FSL working at λ 0 = 376 nm , with the following parameters: a = 45 nm , b = 35 nm , c = 55 nm , and d = 150 nm . Left, the amplitude of the transmission factor through orders p = 0 (black), p = 1 (red), and order p = 2 (blue) from planes z = z 1 to z = z 2 for s (dashed curves) and p (solid curve) polarizations. It can be seen that evanescent waves are transmitted in the far field with large amplitudes through the order 1 , whereas the transmission of incident propagating waves are blocked through the order 0. Right, the phase delay of the transmission through the order 1 , revealing a linear dependence with k.

Fig. 3
Fig. 3

Two lines of a source object of 40 nm width and 50 nm gap are used for (a), (b) the exact computation of the far-field angular spectrum and (c) the retrieval of the near-field angular spectrum image and (d) the real space image using a FSL from the far-field data assuming NA = 1.5 .

Fig. 4
Fig. 4

Density of electromagnetic energy 5 nm above the object and near-field images retrieved from far-field data assuming NA = 1.5 with and without FSL. The object is constituted by a set of 50 nm width lines source separated by a 30–120 nm gap. This rigorously computed result directly demonstrates the imaging resolution below the diffraction limit using a FSL with an arbitrarily shaped object.

Fig. 5
Fig. 5

Transmission factor shown through an interface through a silver film of 35 nm thickness in glass as a function of the optical wavelength and the transverse wavenumber. Two sharp modes of SPP are clearly shown for the large wavelength at 435 nm. The bandwidth of modes increases for a wavelength reaching 365 nm, for which resonances are superimposed.

Fig. 6
Fig. 6

Transfer function of (a) order 0 and (b) 1 of the silver–glass grating FSL described in the Fig. 2 caption as a function of the wavelength, with a = 45 nm , b = 35 nm , c = 55 nm , and d = 150 nm . The black lines show the area for which waves are transmitted in the far field. With these parameters, the FSL is well designed to work with wavelengths between 365 and 390 nm.

Fig. 7
Fig. 7

Transfer function of (a) order 0 and (b) order 1 of the silver–glass FSL at λ 0 = 376 nm as a function of the thickness of the silver slab with a = 45 nm , c = 55 nm , and d = 150 nm . A maximum of transmission through order 1 is found with 30–40 nm of silver slab. The excitation of SPP modes in the slab of silver at a specific thickness plays a key role in the substantial enhancement of evanescent waves that are converted in propagating waves in the order 1 of the diffraction grating.

Fig. 8
Fig. 8

Amplitude of transmitted waves in diffraction order 1 as a function (a) of the metal filing ratio with b = 35 nm , c = 55 nm , and d = 150 nm and (b) of the grating depth with a = 45 nm , b = 35 nm , d = 150 nm .

Fig. 9
Fig. 9

Computed order 0 and 1 transfer functions of the optical FSL considered, using RCWA with N = 51 (solid curves) or N = 5 (dashed curves) spatial-harmonic orders. Interestingly, the enhancement of evanescent waves and conversion into propagating waves through the diffraction order 1 can be built, even considering the low number of spatial-harmonic order.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H ̃ 2 ( k , z 2 ) = p = + t p ( k p ) H ̃ 1 ( k p , z 1 ) , where k p = k p Λ .
H ̃ 2 ( k , z 2 ) = { t 1 ( k + Λ ) H ̃ 1 ( k + Λ , z 1 ) with 0 < k < n k 0 t + 1 ( k Λ ) H ̃ 1 ( k Λ , z 1 ) with n k 0 < k < 0 . }

Metrics