Abstract

The influence of spectral inversion on the phase jitter of a soliton propagating in single-channel arbitrary dispersion-managed systems is studied with a semianalytic moment method. The results are similar to those previously observed in constant-dispersion links and show that the transmission-system reach can significantly be increased.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmissions," J. Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  2. J. P. Gordon and L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351-1353 (1990).
    [CrossRef] [PubMed]
  3. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616-1618 (2002).
    [CrossRef]
  4. C. Xu and X. Liu, "Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission," Opt. Lett. 27, 1619-1621 (2002).
    [CrossRef]
  5. J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
    [CrossRef]
  6. M. Matsumoto, "Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers," J. Lightwave Technol. 23, 2696-2701 (2005).
    [CrossRef]
  7. C. J. McKinstrie, S. Radic, and C. Xie, "Reduction of soliton phase jitter by in-line phase conjugation," Opt. Lett. 28, 1519-1521 (2003).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
    [CrossRef]
  9. A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.
  10. S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
    [CrossRef]
  11. D. Boivin, M. Hanna, P.-A. Lacourt, and J.-P. Goedgebuer, "Reduction of phase jitter in dispersion-managed systems by in-line filtering," Opt. Lett. 29, 688-690 (2004).
    [CrossRef] [PubMed]
  12. H. A. Haus, "Quantum noise in a solitonlike repeater system," J. Opt. Soc. Am. B 8, 1122-1126 (1991).
    [CrossRef]
  13. M. Hanna, D. Boivin, P.-A. Lacourt, and J.-P. Goedgebuer, "Calculation of optical phase jitter in dispersion-managed systems by use of the moment method," J. Opt. Soc. Am. B 21, 24-28 (2003).
    [CrossRef]
  14. E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, "Computing large signal distortions and bit-error ratios in DPSK transmission systems," IEEE Photon. Technol. Lett. 17, 1022-1024 (2005).
    [CrossRef]
  15. E. T. Spiller, G. M. Donovan, and W. L. Kath, "Direct determination of range extension due to phase conjugation in a soliton-based DPSK transmission system," in Conference on Lasers and Electro-Optics (CLEO), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper CWO4.
    [CrossRef]
  16. C. J. McKinstrie, C. Xie, and C. Xu, "Effects of cross-phase modulation on phase jitter in soliton systems with constant dispersion," Opt. Lett. 28, 604-606 (2003).
    [CrossRef] [PubMed]

2005 (5)

J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
[CrossRef]

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, "Computing large signal distortions and bit-error ratios in DPSK transmission systems," IEEE Photon. Technol. Lett. 17, 1022-1024 (2005).
[CrossRef]

A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmissions," J. Lightwave Technol. 23, 115-130 (2005).
[CrossRef]

M. Matsumoto, "Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers," J. Lightwave Technol. 23, 2696-2701 (2005).
[CrossRef]

2004 (1)

2003 (3)

2002 (2)

1991 (1)

1990 (1)

Adamiecki, A.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

Boivin, D.

Chandrasekhar, S.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Chowdhury, A.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Climent Monsalve, C.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

de Waardt, H.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

Doerr, C. R.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Donovan, G. M.

E. T. Spiller, G. M. Donovan, and W. L. Kath, "Direct determination of range extension due to phase conjugation in a soliton-based DPSK transmission system," in Conference on Lasers and Electro-Optics (CLEO), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper CWO4.
[CrossRef]

Essiambre, R.-J.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Gnauck, A. H.

Goedgebuer, J.-P.

Gordon, J. P.

Hanna, M.

Hansryd, J.

J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
[CrossRef]

Haus, H. A.

Jansen, S. L.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

Kath, W. L.

E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, "Computing large signal distortions and bit-error ratios in DPSK transmission systems," IEEE Photon. Technol. Lett. 17, 1022-1024 (2005).
[CrossRef]

E. T. Spiller, G. M. Donovan, and W. L. Kath, "Direct determination of range extension due to phase conjugation in a soliton-based DPSK transmission system," in Conference on Lasers and Electro-Optics (CLEO), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper CWO4.
[CrossRef]

Khoe, G. D.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

Lacourt, P.-A.

Leuthold, J.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Liu, X.

Matsumoto, M.

McKinstrie, C. J.

Mollenauer, L. F.

Moore, R. O.

E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, "Computing large signal distortions and bit-error ratios in DPSK transmission systems," IEEE Photon. Technol. Lett. 17, 1022-1024 (2005).
[CrossRef]

Radic, S.

Raybon, G.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Sinsky, J.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Slusher, R. E.

Spälter, S.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

Spiller, E. T.

E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, "Computing large signal distortions and bit-error ratios in DPSK transmission systems," IEEE Photon. Technol. Lett. 17, 1022-1024 (2005).
[CrossRef]

E. T. Spiller, G. M. Donovan, and W. L. Kath, "Direct determination of range extension due to phase conjugation in a soliton-based DPSK transmission system," in Conference on Lasers and Electro-Optics (CLEO), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper CWO4.
[CrossRef]

van den Borne, D.

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

van Howe, J.

J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
[CrossRef]

Wei, X.

Winzer, P. J.

Xie, C.

Xu, C.

IEEE Photon. Technol. Lett. (3)

J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
[CrossRef]

S. L. Jansen, D. van den Borne, C. Climent Monsalve, S. Spälter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, "Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion," IEEE Photon. Technol. Lett. 17, 923-925 (2005).
[CrossRef]

E. T. Spiller, W. L. Kath, R. O. Moore, and C. J. McKinstrie, "Computing large signal distortions and bit-error ratios in DPSK transmission systems," IEEE Photon. Technol. Lett. 17, 1022-1024 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Lett. (6)

Other (3)

E. T. Spiller, G. M. Donovan, and W. L. Kath, "Direct determination of range extension due to phase conjugation in a soliton-based DPSK transmission system," in Conference on Lasers and Electro-Optics (CLEO), OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper CWO4.
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, "Compensation of intra-channel nonlinearities in 40 Gb/s pseudo-linear systems using optical phase conjugation," in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper PDP32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Standard deviation of the phase as a function of distance for the DM soliton system with and without SI.

Fig. 2
Fig. 2

Variance of the nonlinear phase as a function of distance for the 100 GHz DMS system.

Fig. 3
Fig. 3

Phase variance evolution as a function of the spectral inverter location for the 100 GHz DMS system.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

i u z 1 2 [ ϵ β 2 ( z ) i b ( z ) ] 2 u t 2 + ϵ γ ( z ) u 2 u = i g ( z ) u + F ( z , t ) ,
F ( z , t ) F * ( z , t ) = 2 g 0 ω 0 n sp ( z ) δ ( z z ) δ ( t t ) ,
E = + u 2 d t ,
P = 1 E + u 4 d t ,
Φ = 1 E + u 2 arg ( u ) d t .
d Φ d z = ϵ β 2 ϕ 2 Φ + ϵ γ P + i E + [ arg ( u ) Φ ] ( u F ̂ * u * F ̂ ) d t 1 2 E + u * F ̂ + u F ̂ * d t ,
d P d z = 2 [ g + ϵ β 2 ϕ 2 b ( z ) 2 E + u t 2 d t ] P + i E + ( 2 u 2 P ) ( u F ̂ * u * F ̂ ) d t .
P ( z ) = ( P 0 + i 0 z { 1 E A 1 + [ ( 2 u 2 P ) ] ( u F ̂ * u * F ̂ ) d t } d z 1 ) A 1 ,
A 1 ( z ) = exp { 0 z 2 [ g + β 2 ϕ 2 b ( z ) 2 E + u t 2 d t ] d z 1 } ,
Φ = Φ 1 + Φ 2 + Φ 3 ,
Φ 1 = A 2 0 z γ P A 2 d z 1 ,
Φ 2 = i A 2 0 z { 1 E A 2 + [ arg ( u ) Φ ] × ( u F ̂ * u * F ̂ ) d t } d z 1 ,
Φ 3 = A 2 2 0 z [ 1 E A 2 + ( u * F ̂ + u F ̂ * ) d t ] d z 1 ,
A 2 ( z ) = exp ( 0 z β 2 ϕ 2 d z 1 ) .
σ Φ 2 = Φ 2 Φ 2 = Φ 1 2 + Φ 2 2 + Φ 3 2 + 2 Φ 1 Φ 2 ,
Φ 1 2 = A 2 2 0 z γ A 1 A 2 0 z 1 γ A 1 A 2 0 z 2 ( δ q 1 , δ q 1 ) d z 3 d z 2 d z 1 ,
Φ 2 2 = A 2 2 2 0 z ( δ q 2 , δ q 2 ) d z 1 ,
Φ 3 2 = A 2 2 8 0 z ( δ q 3 , δ q 3 ) d z 1 ,
2 Φ 1 Φ 2 = A 2 2 0 z γ A 1 0 z 1 ( δ q 1 , δ q 2 ) d z 2 d z 1 ,
( δ q i , δ q j ) = + δ q i δ q j * + δ q i * δ q j d t
δ q 1 = 2 i g n sp ω 0 2 u 2 P E A 1 u ,
δ q 2 = 2 i g n sp ω 0 arg ( u ) Φ E A 2 u ,
δ q 3 = 2 g n sp ω 0 u E A 2 .
Φ ̂ 1 ( z ) = Φ 1 ( L 1 ) A ̂ 2 0 z γ P ̂ ( z 1 ) A ̂ 2 d z 1 ,
P ̂ ( z ) = A ̂ 1 ( P ( L 1 ) + i 0 z { 1 E ̂ A ̂ 1 + [ ( 2 u 2 P ̂ ) ] ( u F * u * F ) d t } d z 1 ) ,
A ̂ 1 ( z ) = exp { 0 z 2 [ g β 2 ϕ 2 b ( z ) 2 E + u t 2 d t ] d z 1 } ,
A ̂ 2 ( z ) = exp ( 0 z β 2 ϕ 2 d z 1 ) .
Φ ̂ 1 2 = Φ 1 ( L 1 ) 2 + σ Φ PC 1 2 ( z ) σ Φ PC 2 2 ( z ) .
σ Φ PC 1 2 ( z ) = G ( z ) [ 0 z ( δ q ̂ 1 , δ q ̂ 1 ) d z 3 + A 1 2 ( L 1 ) 0 L 1 ( δ q 1 , δ q 1 ) d z 3 + 2 A 1 ( L 1 ) 0 min ( z , L 1 ) ( δ q 1 , δ q 1 ) d z 3 ] ,
σ Φ PC 2 2 ( z ) = 3 8 H ( z ) [ A 1 ( L 1 ) A 2 ( L 1 ) 0 L 1 ( δ q 1 , δ q 1 ) d z 3 + A 2 ( L 1 ) 0 min ( z , L 1 ) ( δ q 1 , δ q 1 ) d z 2 ] .
G ( z ) = A ̂ 2 2 ( z ) 0 z γ A ̂ 1 A ̂ 2 ( z 1 ) 0 z 1 γ A ̂ 1 A ̂ 2 ( z 2 ) d z 2 d z 1 ,
H ( z ) = A ̂ 2 ( z ) 0 L 1 γ A 1 A 2 ( z 2 ) d z 2 0 z γ A ̂ 1 A ̂ 2 ( z 3 ) d z 3 ,
δ q 1 = 2 i g n sp ω 0 2 u 2 P E A 1 u ,
δ q ̂ 1 = 2 i g n sp ω 0 2 u 2 P ̂ E ̂ A ̂ 1 u ,
δ q 1 = 2 i g n sp ω 0 2 u 2 P ̂ E A 1 A ̂ 1 u .

Metrics