Abstract

We reexamine the optical reorientation of a homeotropic nematic-liquid-crystal film under finite beam-size excitation and linear polarization. We study the case of normal and oblique incidence (extraordinary wave). Under the most basic assumptions (geometrical optics approximation, elastic isotropy) we systematically analyze the dependence of transverse nonlocal effects as a function of the angle of incidence, the beam size, and the intensity. Besides recovering some well-known results (Fréedericksz transition threshold and spatial extension of the molecular reorientation as a function of the beam size), we identify a series of nonmonotonous behaviors of the material response as well as shape variations of the reorientation profiles.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].
  2. B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan, "Fréedericksz transitions induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72-83 (1981). B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan,[Sov. Phys. JETP 54, 32-37 (1981)].
  3. A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].
  4. L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
    [CrossRef]
  5. A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].
  6. I. Drevensek-Olenik, M. Jazbinsek, and M. Copic, "Localized soft mode at optical-field-induced Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 82, 2103-2106 (1999).
    [CrossRef]
  7. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Laser induced diffraction rings from a nematic liquid crystal film," Opt. Lett. 6, 411-413 (1981).
    [PubMed]
  8. E. Santamato and Y. R. Shen, "Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film," Opt. Lett. 9, 564-566 (1984).
    [CrossRef] [PubMed]
  9. F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
    [CrossRef]
  10. V. P. Romanov and D. O. Fedorov, "Anisotropy of reorientation of the director in nematic liquid crystals at the Fréedericksz optical transition," Opt. Spektrosk. 78, 274-280 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 78, 244-250 (1995)].
  11. V. P. Romanov and D. O. Fedorov, "Dynamics of reorientation of nematic liquid crystals in the field of a light wave," Opt. Spektrosk. 79, 313-319 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 79, 288-294 (1995)].
  12. M. Peccianti, C. Conti, and G. Assanto, "Interplay between nonlocality and nonlinearity in nematic liquid crystals," Opt. Lett. 30, 415-417 (2005).
    [CrossRef] [PubMed]
  13. M. A. Karpierz, "Solitary waves in liquid crystalline waveguides," Phys. Rev. E 66, 036603 (2002).
    [CrossRef]
  14. I. C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
    [CrossRef]
  15. B. Y. Zel'dovich and N. Tabiryan, "Theory of optically induced Fredericksz transition," Zh. Eksp. Teor. Fiz. 82, 1126-1146 (1982). B. Y. Zel'dovich and N. Tabiryan,[Sov. Phys. JETP 55, 656-666 (1982)].
  16. J. Li and S. T. Wu, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
    [CrossRef]
  17. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Optical-field-induced birefringence and Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 47, 1411-1414 (1981).
    [CrossRef]
  18. I. C. Khoo and S. T. Wu, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (Wiley,1995).
  19. E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
    [CrossRef]
  20. E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
    [CrossRef]
  21. D. O. Krimer, G. Demeter, and L. Kramer, "Influence of the backflow effect on the orientational dynamics induced by light in nematics," Phys. Rev. E 71, 051711 (2005).
    [CrossRef]

2005 (4)

M. Peccianti, C. Conti, and G. Assanto, "Interplay between nonlocality and nonlinearity in nematic liquid crystals," Opt. Lett. 30, 415-417 (2005).
[CrossRef] [PubMed]

J. Li and S. T. Wu, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

D. O. Krimer, G. Demeter, and L. Kramer, "Influence of the backflow effect on the orientational dynamics induced by light in nematics," Phys. Rev. E 71, 051711 (2005).
[CrossRef]

2004 (1)

E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
[CrossRef]

2002 (1)

M. A. Karpierz, "Solitary waves in liquid crystalline waveguides," Phys. Rev. E 66, 036603 (2002).
[CrossRef]

1999 (1)

I. Drevensek-Olenik, M. Jazbinsek, and M. Copic, "Localized soft mode at optical-field-induced Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 82, 2103-2106 (1999).
[CrossRef]

1995 (2)

V. P. Romanov and D. O. Fedorov, "Anisotropy of reorientation of the director in nematic liquid crystals at the Fréedericksz optical transition," Opt. Spektrosk. 78, 274-280 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 78, 244-250 (1995)].

V. P. Romanov and D. O. Fedorov, "Dynamics of reorientation of nematic liquid crystals in the field of a light wave," Opt. Spektrosk. 79, 313-319 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 79, 288-294 (1995)].

1988 (1)

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

1987 (1)

I. C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
[CrossRef]

1984 (1)

1982 (3)

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

B. Y. Zel'dovich and N. Tabiryan, "Theory of optically induced Fredericksz transition," Zh. Eksp. Teor. Fiz. 82, 1126-1146 (1982). B. Y. Zel'dovich and N. Tabiryan,[Sov. Phys. JETP 55, 656-666 (1982)].

1981 (5)

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Optical-field-induced birefringence and Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 47, 1411-1414 (1981).
[CrossRef]

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan, "Fréedericksz transitions induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72-83 (1981). B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan,[Sov. Phys. JETP 54, 32-37 (1981)].

A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Laser induced diffraction rings from a nematic liquid crystal film," Opt. Lett. 6, 411-413 (1981).
[PubMed]

Arakelian, S. M.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Optical-field-induced birefringence and Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 47, 1411-1414 (1981).
[CrossRef]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Laser induced diffraction rings from a nematic liquid crystal film," Opt. Lett. 6, 411-413 (1981).
[PubMed]

Assanto, G.

Bloisi, F.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

Brasselet, E.

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
[CrossRef]

Chilingaryan, Y. S.

B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan, "Fréedericksz transitions induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72-83 (1981). B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan,[Sov. Phys. JETP 54, 32-37 (1981)].

Cipparrone, G.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

Conti, C.

Copic, M.

I. Drevensek-Olenik, M. Jazbinsek, and M. Copic, "Localized soft mode at optical-field-induced Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 82, 2103-2106 (1999).
[CrossRef]

Csillag, L.

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

Demeter, G.

D. O. Krimer, G. Demeter, and L. Kramer, "Influence of the backflow effect on the orientational dynamics induced by light in nematics," Phys. Rev. E 71, 051711 (2005).
[CrossRef]

Doyon, B.

E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
[CrossRef]

Drevensek-Olenik, I.

I. Drevensek-Olenik, M. Jazbinsek, and M. Copic, "Localized soft mode at optical-field-induced Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 82, 2103-2106 (1999).
[CrossRef]

Dubé, L. J.

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
[CrossRef]

Durbin, S. D.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Laser induced diffraction rings from a nematic liquid crystal film," Opt. Lett. 6, 411-413 (1981).
[PubMed]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Optical-field-induced birefringence and Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 47, 1411-1414 (1981).
[CrossRef]

Fedorov, D. O.

V. P. Romanov and D. O. Fedorov, "Anisotropy of reorientation of the director in nematic liquid crystals at the Fréedericksz optical transition," Opt. Spektrosk. 78, 274-280 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 78, 244-250 (1995)].

V. P. Romanov and D. O. Fedorov, "Dynamics of reorientation of nematic liquid crystals in the field of a light wave," Opt. Spektrosk. 79, 313-319 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 79, 288-294 (1995)].

Galstian, T. V.

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
[CrossRef]

Jánossy, I.

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

Jazbinsek, M.

I. Drevensek-Olenik, M. Jazbinsek, and M. Copic, "Localized soft mode at optical-field-induced Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 82, 2103-2106 (1999).
[CrossRef]

Karpierz, M. A.

M. A. Karpierz, "Solitary waves in liquid crystalline waveguides," Phys. Rev. E 66, 036603 (2002).
[CrossRef]

Khoo, I. C.

I. C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
[CrossRef]

I. C. Khoo and S. T. Wu, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (Wiley,1995).

Kitaeva, V. F.

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

Kramer, L.

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

D. O. Krimer, G. Demeter, and L. Kramer, "Influence of the backflow effect on the orientational dynamics induced by light in nematics," Phys. Rev. E 71, 051711 (2005).
[CrossRef]

Krimer, D. O.

D. O. Krimer, G. Demeter, and L. Kramer, "Influence of the backflow effect on the orientational dynamics induced by light in nematics," Phys. Rev. E 71, 051711 (2005).
[CrossRef]

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

Kroo, N.

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

Kuyumchyan, V.

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

Li, J.

J. Li and S. T. Wu, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Liu, T. H.

I. C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
[CrossRef]

Peccianti, M.

Romanov, V. P.

V. P. Romanov and D. O. Fedorov, "Dynamics of reorientation of nematic liquid crystals in the field of a light wave," Opt. Spektrosk. 79, 313-319 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 79, 288-294 (1995)].

V. P. Romanov and D. O. Fedorov, "Anisotropy of reorientation of the director in nematic liquid crystals at the Fréedericksz optical transition," Opt. Spektrosk. 78, 274-280 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 78, 244-250 (1995)].

Santamato, E.

Shen, Y. R.

Simoni, F.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

Sobolev, N.

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].

Sobolev, N. N.

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

Sukhorukov, A.

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].

Tabiryan, N.

B. Y. Zel'dovich and N. Tabiryan, "Theory of optically induced Fredericksz transition," Zh. Eksp. Teor. Fiz. 82, 1126-1146 (1982). B. Y. Zel'dovich and N. Tabiryan,[Sov. Phys. JETP 55, 656-666 (1982)].

Tabiryan, N. V.

B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan, "Fréedericksz transitions induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72-83 (1981). B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan,[Sov. Phys. JETP 54, 32-37 (1981)].

Umeton, C.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

Vicari, L.

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

Wu, S. T.

J. Li and S. T. Wu, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

I. C. Khoo and S. T. Wu, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (Wiley,1995).

Yan, P. Y.

I. C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
[CrossRef]

Zel'dovich, B. Y.

B. Y. Zel'dovich and N. Tabiryan, "Theory of optically induced Fredericksz transition," Zh. Eksp. Teor. Fiz. 82, 1126-1146 (1982). B. Y. Zel'dovich and N. Tabiryan,[Sov. Phys. JETP 55, 656-666 (1982)].

B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan, "Fréedericksz transitions induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72-83 (1981). B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan,[Sov. Phys. JETP 54, 32-37 (1981)].

Zolot'ko, A. S.

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].

J. Opt. Soc. Am. B (1)

I. C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
[CrossRef]

J. Appl. Phys. (1)

J. Li and S. T. Wu, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

E. Brasselet, T. V. Galstian, L. J. Dubé, D. O. Krimer, and L. Kramer, "Bifurcation analysis of optically induced dynamics in nematic liquid crystals: circular polarization at normal incidence," J. Opt. Soc. Am. B 22, 1671-1680 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

F. Bloisi, L. Vicari, F. Simoni, G. Cipparrone, and C. Umeton, "Self-phase modulation in nematic liquid-crystal films: detailed measurements and theoretical calculations," J. Opt. Soc. Am. B 62, 2462-2466 (1988).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

L. Csillag, I. Jánossy, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "The influence of the finite size of the light spot on the laser induced reorientation of liquid crystals," Mol. Cryst. Liq. Cryst. 84, 125-135 (1982).
[CrossRef]

Opt. Spektrosk. (1)

V. P. Romanov and D. O. Fedorov, "Anisotropy of reorientation of the director in nematic liquid crystals at the Fréedericksz optical transition," Opt. Spektrosk. 78, 274-280 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 78, 244-250 (1995)].

Opt. Lett. (3)

Opt. Spektrosk. (1)

V. P. Romanov and D. O. Fedorov, "Dynamics of reorientation of nematic liquid crystals in the field of a light wave," Opt. Spektrosk. 79, 313-319 (1995). V. P. Romanov and D. O. Fedorov,[Opt. Spectrosc. 79, 288-294 (1995)].

Phys. Rev. Lett. (1)

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, "Optical-field-induced birefringence and Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 47, 1411-1414 (1981).
[CrossRef]

Phys. Rev. E (3)

D. O. Krimer, G. Demeter, and L. Kramer, "Influence of the backflow effect on the orientational dynamics induced by light in nematics," Phys. Rev. E 71, 051711 (2005).
[CrossRef]

M. A. Karpierz, "Solitary waves in liquid crystalline waveguides," Phys. Rev. E 66, 036603 (2002).
[CrossRef]

E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, "Optically induced dynamics in nematic liquid crystals: the role of finite beam size," Phys. Rev. E 69, 021701 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

I. Drevensek-Olenik, M. Jazbinsek, and M. Copic, "Localized soft mode at optical-field-induced Fréedericksz transition in a nematic liquid crystal," Phys. Rev. Lett. 82, 2103-2106 (1999).
[CrossRef]

Pis'ma Zh. Eksp. Teor. Fiz. (1)

A. S. Zolot'ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, "Light-induced Fréedericksz transition in an MBBA crystal," Pis'ma Zh. Eksp. Teor. Fiz. 34, 263-267 (1981). A. S. Zolot'ko,V. F. Kitaeva,N. Kroo, N. N. Sobolev, and L. Csillag,[JETP Lett. 34, 250-254 (1981)].

Pis'ma Zh. Eksp. Teor. Fiz. (1)

A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag, "Light-induced second-order phase transition in a spatially bounded region of a nematic liquid crystal," Pis'ma Zh. Eksp. Teor. Fiz. 36, 66-69 (1982). A. S. Zolot'ko, V. F. Kitaeva, V. Kuyumchyan, N. Sobolev, A. Sukhorukov, and L. Csillag,[JETP Lett. 36, 80-84 (1982)].

Zh. Eksp. Teor. Fiz. (1)

B. Y. Zel'dovich and N. Tabiryan, "Theory of optically induced Fredericksz transition," Zh. Eksp. Teor. Fiz. 82, 1126-1146 (1982). B. Y. Zel'dovich and N. Tabiryan,[Sov. Phys. JETP 55, 656-666 (1982)].

Zh. Eksp. Teor. Fiz. (2)

B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan, "Fréedericksz transitions induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72-83 (1981). B. Y. Zel'dovich, N. V. Tabiryan, and Y. S. Chilingaryan,[Sov. Phys. JETP 54, 32-37 (1981)].

A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov, "Self-focusing of laser radiation in the course of the Fréedericksz transition in the nematic phase of a liquid crystal," Zh. Eksp. Teor. Fiz. 81, 933-941 (1981). A. S. Zolot'ko, V. F. Kitaeva, N. Sobolev, and A. Sukhorukov,[Sov. Phys. JETP 54, 496-500 (1981)].

Other (1)

I. C. Khoo and S. T. Wu, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (Wiley,1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Representation of the director n with the two angles ϴ and Φ. (b) Interaction geometry.

Fig. 2
Fig. 2

Dependence of some quantities on δ for linearly polarized excitation at normal incidence. (a) Normalized Fréedericksz transition threshold intensity ρ th . (b) Normalized Fréedericksz transition threshold power P th . Solid curve numerical result; dashed curve, analytical result obtained by Zolot’ko et al.[5]

Fig. 3
Fig. 3

Dependence of some quantities on δ for linearly polarized excitation at normal incidence. (a) Ratio w θ w 0 . (b) Normalized radius w ̃ θ = w θ L . Solid curve, numerical result; dashed curve, analytical result obtained by Zolot’ko et al.[5]

Fig. 4
Fig. 4

Transverse reorientation profile R (solid curve) and intensity excitation profile G (dash-dotted curve) for different values of δ for linearly polarized excitation at normal incidence. The dashed curve is the analytical result obtained by Zolot’ko et al.[5] (a) δ = 0.2 , (b) δ = 2 , (c) δ = 4 . The results are plotted just above the transition threshold [ R ( 0 ) = 10 3 ] and are normalized to unity at the origin.

Fig. 5
Fig. 5

Dependence of the transverse reorientation profile amplitude R ( 0 ) as a function of ρ ρ th for different values of δ. (a) Smaller values of δ: 0.5, 1, 2, and 5. (b) Larger values of δ: 10, 30, 50, and 70. The arrow’s direction indicates increasing values of δ. The dashed curve is for IPW case.

Fig. 6
Fig. 6

Dependence of w ̃ θ as a function of ρ ρ th for δ = 0.5 , 1, 2, and 4 for linearly polarized excitation at normal incidence.

Fig. 7
Fig. 7

Dependence of the transverse reorientation profile amplitude R ( 0 ) as a function of ρ ρ th for linearly polarized excitation at oblique incidence with δ = 2 and α = 1 ° , 5°, 10°, and 20°. The dashed curve is for α = 0 ° .

Fig. 8
Fig. 8

Ratio w θ w 0 as a function of δ for linearly polarized excitation at oblique incidence. (a) ρ ρ th = 0.1 ; the curves for different values of α are not distinguishable. (b) ρ ρ th = 1 , α = 1 ° (curve 1), α = 5 ° (curve 2), α = 10 ° (curve 3), and the dashed curve is for α = 0 ° .

Fig. 9
Fig. 9

Ratio w θ w θ min as a function of ρ ρ th for linearly polarized excitation at oblique incidence, where w θ min is the minimum value of w θ . (a) δ = 2 with α = 1 ° , 5°, 10°, and 20°. (b) α = 10 ° with δ = 0.2 , 0.5, 1, and 2.

Fig. 10
Fig. 10

Transverse reorientation profile amplitude R ( 0 ) as a function of ρ ρ th for linearly polarized excitation at oblique incidence with α = 10 ° and δ = 1 . The dashed curves represent the situations d [ R ( 0 ) ρ ] d ρ > 0 (point A), d [ R ( 0 ) ρ ] d ρ = 0 (point B) and d [ R ( 0 ) ρ ] d ρ < 0 (point C).

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

2 ϴ r 2 + 1 r ϴ r + 2 ϴ z 2 + ϵ a 16 π K [ sin 2 ϴ ( E x 2 E z 2 ) + cos 2 ϴ ( E x E z * + E x * E z ) ] = 0 ,
E x = E ( r ) [ ( ϵ z z sin 2 α 0 ) ϵ ] 1 4 exp [ i ψ ( α 0 , r , z ) ] ,
E z = E ( r ) [ ( ϵ z z sin 2 α 0 ) ϵ ] 1 4 exp [ i ψ ( α 0 , r , z ) ] × { ( ϵ 1 2 sin α 0 ϵ z z ) [ ( ϵ z z sin 2 α 0 ) ϵ ] 1 2 ( ϵ x z ϵ z z ) } .
ϴ ( r , z ) = R ( r ) sin ( π z L ) .
2 R r ̃ 2 + 1 r ̃ R r ̃ π 2 R + ρ G ( r ̃ , w ̃ 0 ) i = 0 3 a i ( α ) R i = 0
R r ̃ ( 0 ) = 0 , lim r ̃ R ( r ̃ ) = 0 .
a 0 ( α ) = 4 π α ,
a 1 ( α ) = π 2 ( 1 3 2 μ α 2 ) ,
a 2 ( α ) = 8 π 3 ( 1 3 μ ) α ,
α 3 ( α ) = π 2 8 [ 5 9 μ + ( 45 μ 33 ) 2 μ α 2 ] .
a 0 , K ( 0 ) = 0 = a 0 ( 0 ) ,
a 1 , K ( 0 ) = π 2 = a 1 ( 0 ) ,
a 2 , K ( 0 ) = 0 = a 2 ( 0 ) ,
a 3 , K ( 0 ) = π 2 2 a 3 ( 0 ) ,
a 0 , K ( α ) = 4 π α = a 0 ( α ) ,
a 1 , K ( α ) = π 2 ( 1 2 α 2 ) a 1 ( α ) ,
a 2 , K ( α ) = 0 a 2 ( α ) ,
a 3 , K ( α ) = 0 a 3 ( α ) ,
ρ K = μ ρ ρ .
R + ( r ̃ 0 ) = R ( r ̃ 0 ) , R + r ̃ ( r ̃ 0 ) = R r ̃ ( r ̃ 0 ) .
R Z ( r ̃ ) = R Z ( 0 ) G ( r ̃ , w ̃ θ , Z ) ,
w ̃ θ , Z ( δ ) = ( 2 π δ ) 1 2 ,
ρ th , Z ( δ ) = ( 1 + 2 3 2 π δ ) 2 .
2 R r ̃ 2 + 1 r ̃ R r ̃ π 2 R = 0 , r ̃ > r ̃ 1 ,
Γ el , = K ( 2 ϴ r 2 + 1 r ϴ r ) ,
2 w θ d w θ w 0 2 d ρ ρ ,
2 w θ d w θ w 0 2 ρ R ( 0 ) d [ R ( 0 ) ρ ] ,
ξ 0 ( δ ) = ξ IPW 1 + δ ¯ δ ,
ξ 0 w 0 1 δ if δ δ ¯ ,
ξ 0 w 0 1 if δ δ ¯ .
F 1 = K 1 2 ( n ) 2 ,
= K 1 2 ( θ τ 2 cos 2 θ + θ 2 2 sin 2 θ θ τ θ 2 sin 2 θ ) 2 ;
F 2 = K 2 2 ( n × n ) 2 = 0 ;
F 3 = K 3 2 ( n × × n ) 2 ,
= K 3 2 ( θ τ 2 sin 2 θ + θ 2 2 cos 2 θ + θ τ θ 2 sin 2 θ ) 2 ;
F e = 2 π [ F 1 ( r ) + F 2 ( r ) + F 3 ( r ) ] r d r d z ;
F 1 ( r ) = K 1 2 ( θ τ 2 cos 2 θ + θ 2 2 sin 2 θ θ τ θ 2 sin 2 θ ) 2 ;
F 2 ( r ) = 0 ;
F 3 ( r ) = K 3 2 ( θ τ 2 sin 2 θ + θ 2 2 cos 2 θ + θ τ θ 2 sin 2 θ ) 2 .
F 4 = Δ ϵ 8 π E op 2 ( r ) sin 2 θ ;
F = 2 π [ F 1 ( r ) + F 2 ( r ) + F 3 ( r ) + F 4 ( r ) ] r d r d z ;
F e = π K 0 d d z 0 ( θ r 2 + θ z 2 ) r d r ;
F = π K d 2 0 [ R 2 + ( π d ) 2 R 2 Δ ϵ 4 π K E op 2 exp ( a r 2 ) R 2 + Δ ϵ 16 π K E op 2 exp ( a r 2 ) R 4 ] r d r ;
d d r [ I ( R , R ) R ] I ( R , R ) R ;
R 1 ( r ) + R 1 r + [ b cos 2 β exp ( a r 2 ) π 2 d 2 ] + 2 b π exp ( a r 2 ) sin 2 β = 0 .

Metrics