Abstract

Cavity ringdown spectroscopy, or photon-trap spectroscopy for generality, is shown to be applicable to a sample in the solid phase by theoretical and experimental studies. In the technique investigated, a solid in a substrate form having optically flat parallel surfaces is inserted exactly normal to a light beam in a high-finesse optical cavity; the light reflected at the substrate surface is coupled back to the cavity and thus the optical loss is minimized. Thereby the trapping lifetime of photons in the cavity is measured to obtain total optical loss including absorption by the solid sample. As the solid substrate behaves as an extra cavity splitting the original cavity, the trapped photons are susceptible to an interference effect inherent to the triply coupled cavity. To elucidate this effect, the coupling efficiency of the incident light and the trapping lifetime of photons dissipating exponentially were analyzed theoretically for a Fabry–Perot cavity containing a transparent substrate as a model. An experiment was performed on a silicon substrate transparent in the mid-infrared range with a cw optical parametric oscillator based on periodically poled lithium niobate. The optical loss caused by insertion of the substrate was measured to be 2.3×10-4 per round trip, which meets a low-loss requirement of the photon-trap technique. The trapping lifetime of photons was found to depend on the location of the substrate as predicted by theory. By optimizing the experimental conditions, the present technique provides a high sensitivity to optical absorption associated with a trace amount of dopants in solids and adsorbates on surfaces.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, "Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method," Appl. Opt. 19, 144-147 (1980).
    [CrossRef] [PubMed]
  2. D. Z. Anderson, J. C. Frisch, and C. S. Masser, "Mirror reflectometer based on optical cavity decay time," Appl. Opt. 23, 1238-1245 (1984).
    [CrossRef] [PubMed]
  3. A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
    [CrossRef]
  4. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
    [CrossRef]
  5. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000).
    [CrossRef]
  6. R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
    [CrossRef]
  7. D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
    [CrossRef]
  8. S. L. Logunov, "Cavity ringdown detection of losses in thin films in the telecommunication wavelength window," Appl. Opt. 40, 1570-1573 (2001).
    [CrossRef]
  9. A. H. M. Smets, J. H. van Helden, and M. C. M. van de Sanden, "Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique," J. Non-Cryst. Solids 299-302, 610-614 (2002).
    [CrossRef]
  10. I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
    [CrossRef]
  11. G. A. Marcus and H. A. Schwettman, "Cavity ringdown spectroscopy of thin films in the mid-infrared," Appl. Opt. 41, 5167-5171 (2002).
    [CrossRef] [PubMed]
  12. R. N. Muir and A. J. Alexander, "Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy," Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
    [CrossRef]
  13. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy for probing surface processes," Chem. Phys. Lett. 280, 104-112 (1997).
    [CrossRef]
  14. A. C. R. Pipino, "Ultrasensitive surface spectroscopy with a miniature optical resonator," Phys. Rev. Lett. 83, 3093-3096 (1999).
    [CrossRef]
  15. A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
    [CrossRef]
  16. S. Xu, G. Sha, and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002).
    [CrossRef]
  17. A. J. Hallock, E. S. F. Berman, and R. N. Zare, "Direct monitoring of absorption in solution by cavity ring-down spectroscopy," Anal. Chem. 74, 1741-1743 (2002).
    [CrossRef] [PubMed]
  18. K. L. Snyder and R. N. Zare, "Cavity ring-down spectroscopy as a detector for liquid chromatography," Anal. Chem. 75, 3086-3091 (2003).
    [CrossRef] [PubMed]
  19. J. M. Herbelin and J. A. McKay, "Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method," Appl. Opt. 20, 3341-3344 (1981).
    [CrossRef] [PubMed]
  20. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
    [CrossRef]
  21. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
    [CrossRef]
  22. B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
    [CrossRef]
  23. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
    [CrossRef]
  24. Y. He and B. J. Orr, "Optical heterodyne signal generationand detection in cavity ringdown spectroscopy based on a rapidly swept cavity," Chem. Phys. Lett. 335, 215-220 (2001).
    [CrossRef]
  25. J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: high sensitivity with microwatt light power," Phys. Rev. A 61, 061802/1-4 (2000).
    [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon, Press, Oxford, UK, 1980).
  27. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, "Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3," Opt. Lett. 22, 1293-1295 (1997).
    [CrossRef]

2004 (1)

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

2003 (3)

R. N. Muir and A. J. Alexander, "Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy," Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

K. L. Snyder and R. N. Zare, "Cavity ring-down spectroscopy as a detector for liquid chromatography," Anal. Chem. 75, 3086-3091 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Xu, G. Sha, and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002).
[CrossRef]

A. J. Hallock, E. S. F. Berman, and R. N. Zare, "Direct monitoring of absorption in solution by cavity ring-down spectroscopy," Anal. Chem. 74, 1741-1743 (2002).
[CrossRef] [PubMed]

A. H. M. Smets, J. H. van Helden, and M. C. M. van de Sanden, "Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique," J. Non-Cryst. Solids 299-302, 610-614 (2002).
[CrossRef]

G. A. Marcus and H. A. Schwettman, "Cavity ringdown spectroscopy of thin films in the mid-infrared," Appl. Opt. 41, 5167-5171 (2002).
[CrossRef] [PubMed]

2001 (3)

D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
[CrossRef]

S. L. Logunov, "Cavity ringdown detection of losses in thin films in the telecommunication wavelength window," Appl. Opt. 40, 1570-1573 (2001).
[CrossRef]

Y. He and B. J. Orr, "Optical heterodyne signal generationand detection in cavity ringdown spectroscopy based on a rapidly swept cavity," Chem. Phys. Lett. 335, 215-220 (2001).
[CrossRef]

2000 (2)

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: high sensitivity with microwatt light power," Phys. Rev. A 61, 061802/1-4 (2000).
[CrossRef]

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

1999 (2)

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

A. C. R. Pipino, "Ultrasensitive surface spectroscopy with a miniature optical resonator," Phys. Rev. Lett. 83, 3093-3096 (1999).
[CrossRef]

1998 (1)

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

1997 (6)

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, "Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3," Opt. Lett. 22, 1293-1295 (1997).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy for probing surface processes," Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
[CrossRef]

1988 (1)

A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

1984 (1)

1981 (1)

1980 (1)

Aarts, I. M. P.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Alexander, A. J.

R. N. Muir and A. J. Alexander, "Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy," Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Anderson, D. Z.

Benard, D. J.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

Berman, E. S. F.

A. J. Hallock, E. S. F. Berman, and R. N. Zare, "Direct monitoring of absorption in solution by cavity ring-down spectroscopy," Anal. Chem. 74, 1741-1743 (2002).
[CrossRef] [PubMed]

Deacon, D. A. G.

A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Engeln, R.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

Frisch, J. C.

Hall, J. L.

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: high sensitivity with microwatt light power," Phys. Rev. A 61, 061802/1-4 (2000).
[CrossRef]

Hallock, A. J.

A. J. Hallock, E. S. F. Berman, and R. N. Zare, "Direct monitoring of absorption in solution by cavity ring-down spectroscopy," Anal. Chem. 74, 1741-1743 (2002).
[CrossRef] [PubMed]

Hannon, T. E.

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Harb, C. C.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

Harris, J. S.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

He , Y.

Y. He and B. J. Orr, "Optical heterodyne signal generationand detection in cavity ringdown spectroscopy based on a rapidly swept cavity," Chem. Phys. Lett. 335, 215-220 (2001).
[CrossRef]

Herbelin , J. M.

Herbelin, J. M.

Hering, P.

D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
[CrossRef]

Hoex, B.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy for probing surface processes," Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy for probing surface processes," Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Kessels, W. M. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Kleine, D.

D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
[CrossRef]

Kleinermanns, K.

D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
[CrossRef]

Kramper, P.

Kwok, M. A.

Lauterbach, J.

D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
[CrossRef]

Levenson, M. D.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

Li, F.

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Logunov, S. L.

Marcus , G. A.

Martin, J.

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Masser, C. S.

McKay, J. A.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

Mlynek, J.

Muir , R. N.

R. N. Muir and A. J. Alexander, "Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy," Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

O'Keefe, A.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
[CrossRef]

O'Keefe , A.

A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, "Optical heterodyne signal generationand detection in cavity ringdown spectroscopy based on a rapidly swept cavity," Chem. Phys. Lett. 335, 215-220 (2001).
[CrossRef]

Paldus, B. A.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, "Ultrasensitive surface spectroscopy with a miniature optical resonator," Phys. Rev. Lett. 83, 3093-3096 (1999).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy for probing surface processes," Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
[CrossRef]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
[CrossRef]

Schiller, S.

Schneider, K.

Schwettman, H. A.

Sha, G.

S. Xu, G. Sha, and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002).
[CrossRef]

Shaw, A. M.

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Smets, A. H. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

A. H. M. Smets, J. H. van Helden, and M. C. M. van de Sanden, "Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique," J. Non-Cryst. Solids 299-302, 610-614 (2002).
[CrossRef]

Snyder , K. L.

K. L. Snyder and R. N. Zare, "Cavity ring-down spectroscopy as a detector for liquid chromatography," Anal. Chem. 75, 3086-3091 (2003).
[CrossRef] [PubMed]

Spence, T. G.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

Spencer, D. J.

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Ueunten, R. H.

Urevig, D. S.

van de Sanden, M. C. M.

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

A. H. M. Smets, J. H. van Helden, and M. C. M. van de Sanden, "Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique," J. Non-Cryst. Solids 299-302, 610-614 (2002).
[CrossRef]

van den Berg, E.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

van Helden, J. H.

A. H. M. Smets, J. H. van Helden, and M. C. M. van de Sanden, "Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique," J. Non-Cryst. Solids 299-302, 610-614 (2002).
[CrossRef]

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

Xie, J.

S. Xu, G. Sha, and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002).
[CrossRef]

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Xu, S.

S. Xu, G. Sha, and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002).
[CrossRef]

Ye , J.

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: high sensitivity with microwatt light power," Phys. Rev. A 61, 061802/1-4 (2000).
[CrossRef]

Zare, R. N.

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

K. L. Snyder and R. N. Zare, "Cavity ring-down spectroscopy as a detector for liquid chromatography," Anal. Chem. 75, 3086-3091 (2003).
[CrossRef] [PubMed]

A. J. Hallock, E. S. F. Berman, and R. N. Zare, "Direct monitoring of absorption in solution by cavity ring-down spectroscopy," Anal. Chem. 74, 1741-1743 (2002).
[CrossRef] [PubMed]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Anal. Chem. (2)

A. J. Hallock, E. S. F. Berman, and R. N. Zare, "Direct monitoring of absorption in solution by cavity ring-down spectroscopy," Anal. Chem. 74, 1741-1743 (2002).
[CrossRef] [PubMed]

K. L. Snyder and R. N. Zare, "Cavity ring-down spectroscopy as a detector for liquid chromatography," Anal. Chem. 75, 3086-3091 (2003).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (1)

D. Kleine, J. Lauterbach, K. Kleinermanns, and P. Hering, "Cavity ring-down spectroscopy of molecularly thin iodine layers," Appl. Phys. B 72, 249-252 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, "Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy," Appl. Phys. Lett. 84, 3079-3081 (2004).
[CrossRef]

Chem. Phys. Lett. (4)

A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, "Evanescent wave cavity ring-down spectroscopy for probing surface processes," Chem. Phys. Lett. 280, 104-112 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, "CW cavity ring down spectroscopy," Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, Jr., and R. N. Zare, "Optical heterodyne detection in cavity ring-down spectroscopy," Chem. Phys. Lett. 290, 335-340 (1998).
[CrossRef]

Y. He and B. J. Orr, "Optical heterodyne signal generationand detection in cavity ringdown spectroscopy based on a rapidly swept cavity," Chem. Phys. Lett. 335, 215-220 (2001).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

J. Appl. Phys. (1)

B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, "Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization," J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

J. Chem. Phys. (2)

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, "Cavity ringdown spectroscopy on solid C60," J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, "Polarization dependent cavity ring down spectroscopy," J. Chem. Phys. 107, 4458-4467 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

A. H. M. Smets, J. H. van Helden, and M. C. M. van de Sanden, "Bulk and surface defects in a-Si:H films studied by means of the cavity ring down absorption technique," J. Non-Cryst. Solids 299-302, 610-614 (2002).
[CrossRef]

J. Phys. Chem. B (1)

A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, "Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy," J. Phys. Chem. B 107, 7070-7075 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

R. N. Muir and A. J. Alexander, "Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy," Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Phys. Rev. A (1)

J. Ye and J. L. Hall, "Cavity ringdown heterodyne spectroscopy: high sensitivity with microwatt light power," Phys. Rev. A 61, 061802/1-4 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

A. C. R. Pipino, "Ultrasensitive surface spectroscopy with a miniature optical resonator," Phys. Rev. Lett. 83, 3093-3096 (1999).
[CrossRef]

Rev. Sci. Instrum. (2)

A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

S. Xu, G. Sha, and J. Xie, "Cavity ring-down spectroscopy in the liquid phase," Rev. Sci. Instrum. 73, 255-258 (2002).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon, Press, Oxford, UK, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Model cavity consisting of two high-reflectance mirrors, M1 and M2, and a solid substrate, S. M1 and M2 are represented by a virtual solid with a very high refractive index, n0(=n4), where one of the surfaces facing outside is coated for antireflection. The reflectance of the mirrors is approximated by 14/n0, which is 99.90% when n0=4000, for example. The regions H1L1, L1L2, and L2H2 have a physical length (a refractive index) of d1 (n1), d2 (n2), and d3 (n3), respectively. U, V, and W represent an amplitude of the electric field of incident, reflected, and transmitted light waves, respectively. The x, y, and z axes are defined to be the coordinates parallel to the polarization of the electric field, that of the magnetic field, and the direction of light propagation, respectively. In experiments in the ϕ3-sweep mode, the location of the exit mirror M2 is swept to search for a buildup condition.

Fig. 2
Fig. 2

Relationship between ϕ1 and ϕ2 expressed by Eq. (10); ϕ3 is given by ϕ3=ϕ1+mπ (m is an integer). When the relationship holds, Tc=1 is achieved as well as Fϕ3/Fempty=1 and τ/τempty=1. Only a region with 0ϕ1, ϕ2π is shown because the function has a periodicity of π in both ϕ1 and ϕ2. The refractive index n2 is assumed to be 3.5, representing that of a silicon substrate in the mid-infrared range.

Fig. 3
Fig. 3

(a) Maximum cavity transmittance Tcmax as a function of ϕ1 and ϕ2. For a given set of (ϕ1, ϕ2), ϕ3 was varied between 0 and π to search for the maximum transmittance. (b) The relative finesse Fϕ3/Fempty as a function of ϕ1 and ϕ2. For a given set of (ϕ1, ϕ2), the FWHM of the transmittance peak was calculated as ϕ3 was varied between 0 and π. We obtained Fϕ3 by dividing π by the width. Fempty stands for the finesse of a cavity without a substrate. The refractive index n2 of the substrate is assumed to be 3.5. Only regions with 0ϕ1, ϕ2π are shown because the functions Tcmax(ϕ1, ϕ2) and Fϕ3(ϕ1, ϕ2) have a periodicity of π in both ϕ1 and ϕ2.

Fig. 4
Fig. 4

Relative photon-trap lifetime τ/τempty as a function of ϕ1 and ϕ2 for several conditions of the substrate location r1+r2/2. The parameter ri is defined by ri=nidi/(n1d1+n2d2+n3d3) with the assumptions of n1=n3=1 and n2=3.5. The thickness of the substrate is assumed to be much thinner than the cavity length (r2=0.002). Only regions with 0ϕ1, ϕ2π are shown because the function τ(ϕ1, ϕ2) has a periodicity of π in both ϕ1 and ϕ2. Note that τ/τempty=1 for any set of (ϕ1, ϕ2) when the substrate is located exactly in the middle of the two cavity mirrors (r1+r2/2=0.5), which is true only for a sufficiently thin substrate.

Fig. 5
Fig. 5

Experimental setup for the photon-trap spectroscopy. M1, M2, high-reflectance cavity mirrors; S, a solid substrate; PZT, a cylindrical piezoelectric transducer with a hole at the center; PD, a photovoltaic InSb infrared detector.

Fig. 6
Fig. 6

Interference fringe measured for a Si(100) substrate. Solid circles show the transmittance experimentally obtained as a function of wave number of a cw mid-infrared laser beam at normal incidence. The solid curve shows the Airy function, which reproduces the data points by adjusting the refractive index and the thickness of the substrate that are used as fitting parameters. The refractive index and the thickness obtained are 3.43±0.03 and 694±6 µm, respectively.

Fig. 7
Fig. 7

(a) Signal trace measured in the ϕ3-sweep mode at 2770.80 cm-1 for a cavity containing a Si(100) substrate characterized in Fig. 6. A leading buildup part, of which the temporal width is proportional to the reciprocal of the finesse Fϕ3 of the cavity, and a trailing exponential decay part, which follows the interruption of the incident light at time zero, are discernible. The signal intensity is normalized to unity at the peak. In this particular example, the light interruption was delayed intentionally by ∼2 µs to show the Lorentzian profile of the buildup region clearly. (b) The exponential decay region in a logarithmic signal scale and a magnified time scale. Thick and thin curves are for with and without the silicon substrate, of which the decay time constants are 2.27 and 2.70 µs, respectively.

Fig. 8
Fig. 8

Photon-trap lifetime measured for a cw mid-infrared laser beam at 2769.75 cm-1 (ϕ2=π/2+mπ; m is an integer) as a function of finesse measured in the ϕ3-sweep mode. The lifetime τ and the finesse Fϕ3 are normalized by those measured at 2770.80 cm-1 (ϕ2=mπ; m is an integer), τ0 and F0, respectively, which are equivalent to those for an empty cavity without a substrate. Three data sets are shown for r1=0.03 (solid circles), 0.50 (open squares), and 0.97 (open circles). The parameter r1 represents the location of a Si(100) substrate defined by r1=n1d1/(n1d1+n2d2+n3d3). The thickness of the substrate used is 694±6 µm, which is much smaller than the cavity length. The solid lines indicate theoretical predictions, τ/τ0=(1-2r1)Fϕ3/F0+2r1.

Tables (1)

Tables Icon

Table 1 Analytical Solutions for Cavity Parametersa

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

Ex(zin)Hy(zin)=MEx(zout)Hy(zout)m11m12m21m22Ex(zout)Hy(zout)=cos ϕ1-in1 sin ϕ1-in1 sin ϕ1cos ϕ1×cos ϕ2-in2 sin ϕ2-in2 sin ϕ2cos ϕ2×cos ϕ3-in3 sin ϕ3-in3 sin ϕ3cos ϕ3Ex(zout)Hy(zout),
Ex(zin)=U+V,
Hy(zin)=n0(U-V),
Ex(zout)=W,
Hy(zout)=n4W,
Tc=n4n0 WU2,
WU=2n0(m11+m12n4)n0+(m21+m22n4).
Tc=4|m11+m12n0+m21/n0+m22|2,
m11=cos ϕ2 cos(ϕ1+ϕ3)-sin ϕ21n2 cos ϕ1 sin ϕ3+n2 sin ϕ1 cos ϕ3,
m22=cos ϕ2 cos(ϕ1+ϕ3)-sin ϕ2n2 cos ϕ1 sin ϕ3+1n2 sin ϕ1 cos ϕ3,
m12=-i cos ϕ2 sin(ϕ1+ϕ3)-i sin ϕ21n2 cos ϕ1 cos ϕ3-n2 sin ϕ1 sin ϕ3,
m21=-i cos ϕ2 sin(ϕ1+ϕ3)-i sin ϕ2n2 cos ϕ1 cos ϕ3-1n2 sin ϕ1 sin ϕ3.
Tc=1A2+2BC+B2n02+C2/n02,
A=cos ϕ2 cos(ϕ1+ϕ3)-12 n2+1n2sin ϕ2 sin(ϕ1+ϕ3),
B=-12 cos ϕ2 sin(ϕ1+ϕ3)-12 sin ϕ21n2 cos ϕ1 cos ϕ3-n2 sin ϕ1 sin ϕ3,
C=-12 cos ϕ2 sin(ϕ1+ϕ3)-12 sin ϕ2n2 cos ϕ1 cos ϕ3-1n2 sin ϕ1 sin ϕ3.
tan ϕ1-1n2 tan ϕ2tan ϕ3-1n2 tan ϕ2
=1n2 sin ϕ22,(tan ϕ20),
tan ϕ1+tan ϕ3=0,(tan ϕ2=0).
tan ϕ1=tan ϕ3=cos ϕ2±1n2 sin ϕ2,(tan ϕ20),
Tc(ω0+Δω)1[A0(ω0)]2 11+ΔωA0(ω0)/n0B1(ω0)2,
ωFWHMτ=1.
τ/τempty=2B1(ω0)/(τ1+τ2+τ3)A0(ω0),
A0(ω0)=cos ϕ2 cos(ϕ1+ϕ3)-12 n2+1n2sin ϕ2 sin(ϕ1+ϕ3),
2B1(ω0)τ1+τ2+τ3=cos ϕ2[-(r1+r2/n2+r3)cos ϕ1 cos ϕ3+(r1+r2n2+r3)sin ϕ1 sin ϕ3]+sin ϕ2[(r1n2+r2+r3/n2)×cos ϕ1 sin ϕ3+(r1/n2+r2+r3n2)sin ϕ1 cos ϕ3],
Tcmax=(1-R1)(1-R2)(1-R1R2)22n2+1/n22,
Fϕ3π(R1R2)1/41-R1R22πT1+T2πn02(1+1/n22);
Fϕ3/Fempty21+1/n22,
τ/τempty=1+n22-1n22+1(1-2r1),
Tcmax4(n2+1/n2)2,
Fϕ3πn02(1+n22);
Fϕ3/Fempty21+n22.
τ/τempty=1+n22-1n22+1(2r1-1)
fT(Rs, ϕ)=11+4Rs(1-Rs)2 sin2ϕ2,

Metrics