Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bidirectional description of amplified spontaneous emission induced by three-photon absorption

Not Accessible

Your library or personal account may give you access

Abstract

A semiclassical dynamic theory of the nonlinear propagation of a few interacting intense light pulses is applied to study the nonlinear counterpropagation of amplified spontaneous emission (ASE) induced by three-photon absorption of short intense laser pulses in a chromophore solution. Several important results from the modeling are reached for the ASE process developing in the regime of strong saturation. Accounting for ASE in both forward and backward directions with respect to the pump pulse results in a smaller efficiency of nonlinear conversion for the forward ASE compared with the case in which forward emission is considered alone, something that results from the partial repump of the absorbed energy to the backward ASE component; the overall efficiency is nevertheless higher than for the forward emission considered alone. The efficiency of nonlinear conversion of the pump energy to the counterpropagating ASE pulses is strongly dependent on the concentration of active molecules so that a particular combination of concentration versus cell length optimizes the conversion coefficient. Under certain specified conditions, the ASE effect is found to be oscillatory; the origin of oscillations is dynamical competition between stimulated emission and off-resonant absorption. This result can be considered one of the possible explanations of the temporal fluctuations of the forward ASE pulse [Nature 415, 767 (2002)].

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Upconverted lasing based on many-photon absorption: an all dynamic description

A. Baev, F. Gel'mukhanov, O. Rubio-Pons, P. Cronstrand, and H. Ågren
J. Opt. Soc. Am. B 21(2) 384-396 (2004)

Direct four-photon excitation of amplified spontaneous emission in a nonlinear organic chromophore

Przemyslaw P. Markowicz, Guang S. He, and Paras N. Prasad
Opt. Lett. 30(11) 1369-1371 (2005)

Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores

Richard L. Sutherland, Mark C. Brant, Jim Heinrichs, Joy E. Rogers, Jonathan E. Slagle, Daniel G. McLean, and Paul A. Fleitz
J. Opt. Soc. Am. B 22(9) 1939-1948 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.