Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time averaging of multimode optical fiber output for a magneto-optical trap

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a method for increasing the amount of power available for laser cooling applications by using a multimode optical fiber. Through randomization of phase shifts of modes within the fiber on time scales faster than the center-of-mass response time of the atoms, a smooth time-averaged trapping beam is generated. The principle has been demonstrated in a pyramidal magneto-optical trap. The method is particularly suitable for the harnessing of the high output power of broad-area diode lasers for laser cooling.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Doughnut mode magneto-optical trap

M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and D. H. McIntyre
J. Opt. Soc. Am. B 14(3) 544-552 (1997)

Double-well surface magneto-optical traps for neutral atoms in a vapor cell

Jianjun Hu, Jianping Yin, and Jianjun Hu
J. Opt. Soc. Am. B 22(5) 937-942 (2005)

Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap

J. Lee, J. A. Grover, L. A. Orozco, and S. L. Rolston
J. Opt. Soc. Am. B 30(11) 2869-2874 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved