Abstract

Different filamentary tracks in synthesized silica were induced by varying both the pulse duration and the incident energy of chirped laser pulses under slow-focusing conditions. Short-duration pulses induced filamentary refractive-index change, whereas longer pulses produced scattering damage in filamentary tracks. We report a systematic study on the morphology and birefringence of filamentary refractive-index change and scattering damage.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.  21, 2023–2025 (1996).
    [CrossRef] [PubMed]
  2. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.  71, 882–884 (1997).
    [CrossRef]
  3. M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
    [CrossRef]
  4. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000).
    [CrossRef]
  5. W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express  10, 603–608 (2002).
    [CrossRef] [PubMed]
  6. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
    [CrossRef]
  7. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001).
    [CrossRef]
  8. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
    [CrossRef]
  9. K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, “In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.  26, 19–21 (2001).
    [CrossRef]
  10. M. Kamata and M. Obara, “Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A  A78, 85–88 (2004).
    [CrossRef]
  11. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003).
    [CrossRef] [PubMed]
  12. K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003).
    [CrossRef]
  13. K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003).
    [CrossRef]
  14. X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004).
    [CrossRef] [PubMed]
  15. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
    [CrossRef] [PubMed]
  16. H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
    [CrossRef]
  17. The GDD of the objective lens (M DPlan 5×, Olympus Corp.) at the wavelength of 800 nm is 1150 fs2. Communication with Olympus Corporation. Corporate Research and Development Center Development 2, Optical Development Department.
  18. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
    [CrossRef]
  19. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B  16, 637–650 (1999).
    [CrossRef]
  20. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  21. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.  55, 1205–1209 (1965).
    [CrossRef]
  22. N. Bloembergen, “Laser-induced electric breakdown in solid,” IEEE J. Quantum Electron.  10, 375–386 (1974).
    [CrossRef]
  23. E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett.  19, 495–497 (1971).
    [CrossRef]
  24. N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
    [CrossRef]
  25. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.  26, 1726–1728 (2001).
    [CrossRef]
  26. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003).
    [CrossRef] [PubMed]
  27. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.  29, 119–121 (2004).
    [CrossRef] [PubMed]
  28. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B  19, 2469–2504 (2002).
    [CrossRef]
  29. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
    [CrossRef]
  30. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004).
    [CrossRef]
  31. Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
    [CrossRef]
  32. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B  13, 459–467 (1996).
    [CrossRef]
  33. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
    [CrossRef]
  34. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003).
    [CrossRef] [PubMed]
  35. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
    [CrossRef]
  36. M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
    [CrossRef]
  37. S. Küper and M. Stuke, “Femtosecond uv Excimer laser ablation,” Appl. Phys. B  44, 199–204 (1987).
    [CrossRef]
  38. M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
    [CrossRef]
  39. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.  21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  40. J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998).
    [CrossRef]
  41. M. Will, S. Nolte, B. N. Chichkov, and A. Tunnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt.  41, 4360–4364 (2002).
    [CrossRef] [PubMed]

2004 (6)

M. Kamata and M. Obara, “Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A  A78, 85–88 (2004).
[CrossRef]

X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
[CrossRef] [PubMed]

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.  29, 119–121 (2004).
[CrossRef] [PubMed]

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004).
[CrossRef]

2003 (7)

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003).
[CrossRef] [PubMed]

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003).
[CrossRef] [PubMed]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003).
[CrossRef]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003).
[CrossRef]

2002 (4)

W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express  10, 603–608 (2002).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B  19, 2469–2504 (2002).
[CrossRef]

M. Will, S. Nolte, B. N. Chichkov, and A. Tunnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt.  41, 4360–4364 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
[CrossRef]

1999 (4)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
[CrossRef]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B  16, 637–650 (1999).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
[CrossRef]

1998 (4)

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998).
[CrossRef]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.  71, 882–884 (1997).
[CrossRef]

1996 (3)

1989 (1)

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
[CrossRef]

1987 (1)

S. Küper and M. Stuke, “Femtosecond uv Excimer laser ablation,” Appl. Phys. B  44, 199–204 (1987).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solid,” IEEE J. Quantum Electron.  10, 375–386 (1974).
[CrossRef]

1971 (1)

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett.  19, 495–497 (1971).
[CrossRef]

1965 (1)

Asano, T.

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solid,” IEEE J. Quantum Electron.  10, 375–386 (1974).
[CrossRef]

Borrelli, N. F.

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B  19, 2469–2504 (2002).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Bricchi, E.

Brodeur, A.

Callan, J. P.

Cambell, E. E. B.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

Chan, J. W.

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Chichkov, B. N.

Chin, S. L.

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

Davis, K. M.

Fang, Y.

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

Feit, M. D.

Finlay, R. J.

Franco, M.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
[CrossRef]

Fukata, N.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

Glezer, E. N.

Gong, Q.

X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004).
[CrossRef] [PubMed]

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

Guo, H.

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004).
[CrossRef] [PubMed]

Hase, M.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

Hayashi, K.

Henz, S.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

Her, T.-H.

Herman, S.

Hermann, J.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.  21, 1729–1731 (1996).
[CrossRef] [PubMed]

Huang, L.

Huser, T.

Itoh, K.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003).
[CrossRef]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003).
[CrossRef]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003).
[CrossRef] [PubMed]

W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express  10, 603–608 (2002).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, “In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.  26, 19–21 (2001).
[CrossRef]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000).
[CrossRef]

Jiang, H.

X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004).
[CrossRef] [PubMed]

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

Juodkazis, S.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
[CrossRef]

Kamata, M.

M. Kamata and M. Obara, “Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A  A78, 85–88 (2004).
[CrossRef]

Kautek, W.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Kazansky, P. G.

Kitajima, M.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

Klappauf, B. G.

Krausz, F.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Krol, D. M.

Krüger, J.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Küper, S.

S. Küper and M. Stuke, “Femtosecond uv Excimer laser ablation,” Appl. Phys. B  44, 199–204 (1987).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Li, Y.

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
[CrossRef] [PubMed]

Liu, W.

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
[CrossRef]

Malitson, I. H.

Mansour, N.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
[CrossRef]

Matsuo, S.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Mazur, E.

Milosavljevic, M.

Misawa, H.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Miura, K.

J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.  21, 1729–1731 (1996).
[CrossRef] [PubMed]

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Murakami, K.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

Mysyrowicz, A.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
[CrossRef]

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004).
[CrossRef]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003).
[CrossRef] [PubMed]

Nishii, J.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
[CrossRef] [PubMed]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003).
[CrossRef]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003).
[CrossRef]

K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, “In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.  26, 19–21 (2001).
[CrossRef]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000).
[CrossRef]

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Nolte, S.

Obara, M.

M. Kamata and M. Obara, “Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A  A78, 85–88 (2004).
[CrossRef]

Peng, C.

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

Perry, M. D.

Poumellec, B.

Prade, B.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
[CrossRef]

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998).
[CrossRef]

Rethfeld, B.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
[CrossRef]

Risbud, S.

Rosenfeld, A.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

Rubenchik, A. M.

Saliminia, A.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004).
[CrossRef]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003).
[CrossRef] [PubMed]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Shore, B. W.

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
[CrossRef]

Soileau, M. J.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
[CrossRef]

Spielmann, Ch.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
[CrossRef]

Streltsov, A. M.

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B  19, 2469–2504 (2002).
[CrossRef]

Stuart, B. C.

Stuke, M.

S. Küper and M. Stuke, “Femtosecond uv Excimer laser ablation,” Appl. Phys. B  44, 199–204 (1987).
[CrossRef]

Sudrie, L.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
[CrossRef]

Sugimoto, N.

Sun, H. B.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Sun, Q.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

Suzuki, Y.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Takahashi, T.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Toma, T.

Tunnermann, A.

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

Vallée, R.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004).
[CrossRef]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003).
[CrossRef] [PubMed]

Vanstryland, E. W.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
[CrossRef]

Varel, H.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
[CrossRef]

Wang, X.

Watanabe, M.

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Watanabe, W.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003).
[CrossRef]

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003).
[CrossRef]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003).
[CrossRef] [PubMed]

W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express  10, 603–608 (2002).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, “In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.  26, 19–21 (2001).
[CrossRef]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000).
[CrossRef]

Will, M.

Williams, W. E.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
[CrossRef]

Wu, Z.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett.  19, 495–497 (1971).
[CrossRef]

Yamada, K.

Yamamoto, Y.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

Yang, H.

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004).
[CrossRef] [PubMed]

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (3)

M. Kamata and M. Obara, “Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A  A78, 85–88 (2004).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999).
[CrossRef]

Appl. Phys. B (1)

S. Küper and M. Stuke, “Femtosecond uv Excimer laser ablation,” Appl. Phys. B  44, 199–204 (1987).
[CrossRef]

Appl. Phys. Lett. (4)

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett.  19, 495–497 (1971).
[CrossRef]

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.  71, 882–884 (1997).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solid,” IEEE J. Quantum Electron.  10, 375–386 (1974).
[CrossRef]

J. Appl. Phys. (1)

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003).
[CrossRef]

J. Opt. A (1)

H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. Part 1 (2)

K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003).
[CrossRef]

J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998).
[CrossRef]

Opt. Commun. (3)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001).
[CrossRef]

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004).
[CrossRef]

Opt. Eng. (1)

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.  21, 2023–2025 (1996).
[CrossRef] [PubMed]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000).
[CrossRef]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004).
[CrossRef] [PubMed]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.  29, 119–121 (2004).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, “In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.  26, 19–21 (2001).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.  26, 1726–1728 (2001).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.  21, 1729–1731 (1996).
[CrossRef] [PubMed]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003).
[CrossRef] [PubMed]

Phys. Rev. A (1)

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003).
[CrossRef]

Phys. Rev. B (1)

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 1992).

The GDD of the objective lens (M DPlan 5×, Olympus Corp.) at the wavelength of 800 nm is 1150 fs2. Communication with Olympus Corporation. Corporate Research and Development Center Development 2, Optical Development Department.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical setup for the induction of filamentary tracks. BS, beam splitter; SH, shutter; HWP, half-wave plate; PL, polarizer; ND, neutral density filter; AP, aperture; L, lens; OB, objective lens; CCD, charge-coupled device.

Fig. 2
Fig. 2

Optical image of the plasma luminescence at different pulse durations, (a) 100 fs and (b) 240 fs . Light scattering from a damaged track was observed at 240 fs .

Fig. 3
Fig. 3

Optical images of a part of the filamentary tracks. (a) the region of refractive-index change induced by 100 - fs laser pulses and (b) the scattering damage induced by 240 fs laser pulses.

Fig. 4
Fig. 4

Dependence of structural changes on pulse duration when laser pulses were focused by 0.10 NA objective lens. The pulse duration was varied from 240 to 100 fs (a) under the condition of constant incident energy of 2.0 μ J pulse and (b) under the condition of constant incident energy of 5.0 μ J pulse . The pulses propagate from left to right in the figure.

Fig. 5
Fig. 5

Energy thresholds for filamentary tracks of single-filament refractive-index changes, multiple-filament refractive-index changes, and scattering damage by varying the pulse duration and the incident energy. The dashed line denotes the critical energy for self-focusing.

Fig. 6
Fig. 6

The spectra of transmitted light through synthesized silica during femtosecond laser irradiation with the energy of 2.0 μ J pulse . (a) and (c) denote spectral densities at the pulse duration of 100 fs and 225 fs , respectively; (b) and (d) denote spectral densities placed by a shortwave-pass filter with a cutoff wavelength of 650 nm to detect lower intensity signals in the visible region at 100 fs and 225 fs .

Fig. 7
Fig. 7

Birefringent properties of the structures produced by 240 fs chirped pulses; (a) shows unpolarized white-light image of scattering damage in a y z plane and (b) shows cross-Nicole image of the structures indicated in (a), when the sample was set between two crossed polarizers.

Fig. 8
Fig. 8

Birefringent properties of the structures. (a) and (b) are unpolarized transmission white-light microscope images of lines fabricated by 100 fs transform-limited pulses and 240 fs positive-chirped pulses, respectively, at an energy of 1 μ J pulse in a y z plane perpendicular to the laser propagation axis. (c) and (d) are cross-Nicole images of the structures indicated in (a) and (b), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P cr = π ( 0.61 ) 2 λ 2 8 n 0 n 2 ,
d N ( t ) d t = α I ( t ) N ( t ) + σ k I k ( t ) ,

Metrics