Abstract

We investigate the antenna characteristics of a metal tip coupled to terahertz (THz) pulses generated from a photoconductive switch. Enhanced terahertz pulse emission is observed with the metal tip in contact with one of the electrodes of the photoconductive switch. Measurements of the angular dependence of the emitted THz radiation show that the metal tip acts as a highly directional antenna with radiation patterns well described by the theory for long-wire traveling-wave antennas. Similar behavior is observed for the metal tip acting as a THz pulse receiver, in accordance with the reciprocity principle. Effects related to the broadband nature of the THz pulses are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.  81, 1558–1560 (2002).
    [CrossRef]
  2. K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004).
    [CrossRef]
  3. K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
    [CrossRef]
  4. P. C. M. Planken and N. C. J. van der Valk, “Spot-size reduction in terahertz apertureless near-field imaging,” Opt. Lett.  29, 2306–2308 (2004).
    [CrossRef] [PubMed]
  5. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003).
    [CrossRef]
  6. H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
    [CrossRef]
  7. R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
    [CrossRef]
  8. T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004).
    [CrossRef]
  9. V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
    [CrossRef]
  10. L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett.  17, 8–10 (1970).
    [CrossRef]
  11. H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977).
    [CrossRef]
  12. H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978).
    [CrossRef]
  13. K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975).
    [CrossRef]
  14. F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
    [CrossRef]
  15. D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
    [CrossRef] [PubMed]
  16. D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.  6, 1122–1135 (2000).
    [CrossRef]
  17. R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
    [CrossRef]
  18. U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
    [CrossRef]
  19. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.  24, 1431–1433 (1999).
    [CrossRef]
  20. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B  17, 851–863 (2000).
    [CrossRef]
  21. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett.  85, 6092–6094 (2004).
    [CrossRef]
  22. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature  432, 376–379 (2004).
    [CrossRef] [PubMed]
  23. B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
    [CrossRef]
  24. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996).
    [CrossRef]
  25. P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B  18, 313–317 (2001).
    [CrossRef]
  26. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B  13, 2424–2436 (1996).
    [CrossRef]
  27. F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995).
    [CrossRef]
  28. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.  59, 1972–1974 (1991).
    [CrossRef]
  29. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
    [CrossRef]
  30. G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986).
    [CrossRef]
  31. M. Schall and P. U. Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett.  25, 13–15 (2000).
    [CrossRef]
  32. R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd ed. (McGraw-Hill, 1984), Chaps. 4 and 11.
  33. R. Catterjee, Antenna Theory and Practice (Wiley, 1988).

2005 (1)

R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
[CrossRef]

2004 (7)

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004).
[CrossRef]

H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
[CrossRef]

K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004).
[CrossRef]

K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
[CrossRef]

P. C. M. Planken and N. C. J. van der Valk, “Spot-size reduction in terahertz apertureless near-field imaging,” Opt. Lett.  29, 2306–2308 (2004).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett.  85, 6092–6094 (2004).
[CrossRef]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature  432, 376–379 (2004).
[CrossRef] [PubMed]

2003 (1)

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003).
[CrossRef]

2002 (1)

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.  81, 1558–1560 (2002).
[CrossRef]

2001 (2)

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B  18, 313–317 (2001).
[CrossRef]

2000 (3)

1999 (1)

1996 (3)

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B  13, 2424–2436 (1996).
[CrossRef]

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996).
[CrossRef]

R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
[CrossRef]

1995 (1)

F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995).
[CrossRef]

1992 (1)

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

1991 (2)

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.  59, 1972–1974 (1991).
[CrossRef]

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
[CrossRef]

1990 (1)

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

1987 (1)

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
[CrossRef] [PubMed]

1986 (1)

G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986).
[CrossRef]

1978 (1)

H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978).
[CrossRef]

1977 (1)

H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977).
[CrossRef]

1975 (1)

K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975).
[CrossRef]

1970 (1)

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett.  17, 8–10 (1970).
[CrossRef]

1969 (1)

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
[CrossRef]

Auston, D. H.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

Bakker, H. J.

Barkan, A.

K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004).
[CrossRef]

Bichler, M.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Catterjee, R.

R. Catterjee, Antenna Theory and Practice (Wiley, 1988).

Chen, H. T.

R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
[CrossRef]

H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
[CrossRef]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003).
[CrossRef]

Chen, J. C.

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
[CrossRef] [PubMed]

Chi, C. C.

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
[CrossRef] [PubMed]

Cho, G. C.

R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
[CrossRef]

H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
[CrossRef]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003).
[CrossRef]

Daneu, V.

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
[CrossRef]

Darack, S. B.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Darrow, J. T.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

Dienes, A.

G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986).
[CrossRef]

Duling, I. N.

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
[CrossRef] [PubMed]

Dykaar, D. R.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Evenson, K. M.

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett.  17, 8–10 (1970).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
[CrossRef]

Gallot, G.

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett.  85, 6092–6094 (2004).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B  17, 851–863 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.  24, 1431–1433 (1999).
[CrossRef]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.  59, 1972–1974 (1991).
[CrossRef]

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
[CrossRef] [PubMed]

Grischkowsky, D. R.

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.  6, 1122–1135 (2000).
[CrossRef]

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
[CrossRef]

Hasnain, G.

G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986).
[CrossRef]

Holst, T.

R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
[CrossRef]

Hu, B. B.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

Ignatov, A. A.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Jacobsen, R. H.

R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B  13, 2424–2436 (1996).
[CrossRef]

Jamison, S. P.

Jasik, H.

R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd ed. (McGraw-Hill, 1984), Chaps. 4 and 11.

Javan, A.

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett.  85, 6092–6094 (2004).
[CrossRef]

Jepsen, P. U.

Johnson, R. C.

R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd ed. (McGraw-Hill, 1984), Chaps. 4 and 11.

Karpowicz, N.

R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
[CrossRef]

Keiding, S. R.

R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B  13, 2424–2436 (1996).
[CrossRef]

Keil, U. D.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Kersting, R.

R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
[CrossRef]

H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
[CrossRef]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003).
[CrossRef]

Klappenberger, F.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Kopf, R. F.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Kraatz, S.

H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
[CrossRef]

Kräutle, H.

H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978).
[CrossRef]

H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977).
[CrossRef]

Kuwahara, R.

K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975).
[CrossRef]

Larsen, B. H.

R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
[CrossRef]

Levi, A. F. J.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Litz, M.

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996).
[CrossRef]

Matarrese, L. M.

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett.  17, 8–10 (1970).
[CrossRef]

McGowan, R. W.

Mittleman, D. M.

K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
[CrossRef]

K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004).
[CrossRef]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature  432, 376–379 (2004).
[CrossRef] [PubMed]

Mizuno, K.

K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975).
[CrossRef]

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
[CrossRef]

Nienhuys, H. K.

Ono, S.

K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975).
[CrossRef]

Pfeiffer, L. N.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Planken, P. C. M.

K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
[CrossRef]

P. C. M. Planken and N. C. J. van der Valk, “Spot-size reduction in terahertz apertureless near-field imaging,” Opt. Lett.  29, 2306–2308 (2004).
[CrossRef] [PubMed]

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.  81, 1558–1560 (2002).
[CrossRef]

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B  18, 313–317 (2001).
[CrossRef]

Ralph, S. E.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.  59, 1972–1974 (1991).
[CrossRef]

Renk, K. F.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Sanchez, A.

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
[CrossRef]

Sauter, E.

H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978).
[CrossRef]

H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977).
[CrossRef]

Schall, M.

Schomburg, E.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Schultz, G. V.

H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978).
[CrossRef]

H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977).
[CrossRef]

Smith, P. R.

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

Sokoloff, D.

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
[CrossRef]

Sun, F. G.

F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995).
[CrossRef]

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
[CrossRef]

van der Valk, N. C. J.

K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
[CrossRef]

P. C. M. Planken and N. C. J. van der Valk, “Spot-size reduction in terahertz apertureless near-field imaging,” Opt. Lett.  29, 2306–2308 (2004).
[CrossRef] [PubMed]

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.  81, 1558–1560 (2002).
[CrossRef]

Wagoner, G. A.

F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995).
[CrossRef]

Wang, K. L.

K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004).
[CrossRef]

K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
[CrossRef]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature  432, 376–379 (2004).
[CrossRef] [PubMed]

Wegscheider, W.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Wenckebach, T.

West, K. W.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

Whinnery, J. R.

G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986).
[CrossRef]

Winnerl, S.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

Wu, Q.

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996).
[CrossRef]

Xu, J. Z.

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004).
[CrossRef]

Yuan, T.

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004).
[CrossRef]

Zhang, X. C.

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996).
[CrossRef]

F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995).
[CrossRef]

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

Zhang, X.-C.

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004).
[CrossRef]

Appl. Phys. Lett. (13)

N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.  81, 1558–1560 (2002).
[CrossRef]

K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004).
[CrossRef]

K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004).
[CrossRef]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003).
[CrossRef]

V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969).
[CrossRef]

L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett.  17, 8–10 (1970).
[CrossRef]

K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975).
[CrossRef]

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett.  85, 6092–6094 (2004).
[CrossRef]

B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990).
[CrossRef]

Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996).
[CrossRef]

F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995).
[CrossRef]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.  59, 1972–1974 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.  6, 1122–1135 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991).
[CrossRef]

G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986).
[CrossRef]

Infrared Phys. (2)

H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977).
[CrossRef]

H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978).
[CrossRef]

Infrared Phys. Technol. (1)

T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004).
[CrossRef]

J. Appl. Phys. (1)

R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996).
[CrossRef]

J. Opt. A (1)

R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature  432, 376–379 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004).
[CrossRef]

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987).
[CrossRef] [PubMed]

Other (2)

R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd ed. (McGraw-Hill, 1984), Chaps. 4 and 11.

R. Catterjee, Antenna Theory and Practice (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup: A photoconductive switch (PC1) with a metal tip in contact with one of the strip lines acts as a wire antenna emitting and receiving THz pulses. PC1 can be rotated together with the tip about the y axis. (a) The radiated THz pulses are collected and focused by two off-axis parabolic mirrors onto a detector where the electric field is electro-optically sampled in a ZnTe crystal. Two photodiodes (PD1 and PD2) are used for balanced detection. The inset shows a more detailed view of the metal tip in contact with one of the strip lines of the photoconductive switch. The z axis is in the direction of propagation toward the THz detection setup, and α is the angle of the metal tip with respect to the z axis by rotation about the y axis. (b) In a second arrangement, THz pulses are generated from a photoconductive switch equipped with a hyperhemispheric silicon lens (PC2) and focused onto the switch with the metal tip (PC1). In this case, PC1 is used as a THz detector.

Fig. 2
Fig. 2

THz pulses emitted by the combination of a PC switch and a metal tip at α = 0 ° . For (b) the tip was in contact with one of the strip lines of the switch. The second pulse at later times is due to internal reflection at the back surface of the substrate of the switch. (c) We isolated the THz pulse radiated from the metal tip alone by taking the difference of the two waveforms in (a) and (b). The waveforms are vertically offset for clarity.

Fig. 3
Fig. 3

(a) Radiated THz waveforms as a function of the y position of the metal tip with respect to the position of the laser focus ( y = 0 ) . The waveforms are vertically offset for clarity. (b) Relative delay of the maximum of the THz pulses radiated from the metal tip versus tip position along the y axis. The straight lines are linear fits from which the mean group velocity for the propagation along the coplanar transmission line could be extracted.

Fig. 4
Fig. 4

Angular dependence of the radiated THz pulses for the metal tip at the position of the laser focus ( y = 0 ) . (a) THz waveforms for different angles α, (b) corresponding frequency spectra in terms of the electric field amplitude. Dashed lines, frequencies for which the radiation patterns in Fig. 5 are determined. The traces are vertically offset for clarity.

Fig. 5
Fig. 5

Radiation patterns of the metal-tip wire antenna for several frequencies. Filled circles, experimental values extracted from the spectra in Fig. 4. Dotted curves, theoretical radiation patterns calculated from relation (1); solid curves, the theory convoluted with a ± 10 ° square function to account for the angular resolution of our setup. Dotted arrows indicate the theoretical angles of the main lobes according to Eq. (2). Insets, the radiation patterns of the PC switch with the metal tip not in contact. Linear fits to these data for the metal tip not in contact have been subtracted from the data shown for the metal tip in contact in the larger plots.

Fig. 6
Fig. 6

Measured radiation pattern for 0.2 THz for positive and negative angles (open circles), together with the corresponding data from Fig. 5 (filled circles). The dotted curve is a theoretical curve according to relation (1) with + and − indicating the polarity of the different lobes. The solid curve is the theory convoluted with a ± 10 ° square function.

Fig. 7
Fig. 7

Angle dependence of the spectral extent of the emitted THz pulses. Bars represent the FWHM values of the power spectra of the THz waveforms in Fig. 4a. The solid curve is the theoretical curve for the frequency dependence of main lobe angle α max according to Eq. (2). Inset, a radiation pattern with the corresponding angle of the main lobe.

Fig. 8
Fig. 8

The waveforms radiated from the metal tip reverse their polarity on changing α from positive to negative angles. As an example we show the situation in which the tip was offset from the photoconductive region on the PC switch by Δ y 250 μ m for α = + 10 ° , 10 ° . Dotted lines, positions of the minima and maxima of the electric fields radiated from the metal tip. The waveforms have been vertically offset for clarity.

Fig. 9
Fig. 9

Effect of wire length on angular radiation patterns for 0.2 and 0.8 THz . The data for a wire with L = 5.1 mm (filled circles) and L = 2.1 mm (open circles) are shown together with the corresponding theoretical radiation patterns calculated according to relation (1) and convoluted with a ± 10 ° square function. Solid and dotted arrows mark theoretical angles α max of the main lobes according to Eq. (2).

Fig. 10
Fig. 10

THz pulses detected by the combination of the PC switch and metal tip. Top trace, the detected THz waveform with the metal tip not in contact with one of the strip lines for α = 0 ° . The other waveforms were recorded with the metal tip in contact with one of the strip line electrodes. All curves are vertically offset for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E α sin α 1 cos α sin [ π L λ ( 1 cos α ) ] ,
α max = cos 1 [ 1 0.371 ( λ L ) ] .

Metrics