Abstract

Applying a nonlinear spectroscopic technique, we accurately monitor the dynamics of the homogeneous upconversion (HUC) in Er-doped fibers. We provide the first experimental confirmation, to our knowledge, of the earlier theoretical predictions that, for low erbium concentrations, a decay of HUC-influenced excitation probability of Er ions can be well approximated by the formula describing the static HUC. By correlating the experimentally obtained HUC dynamics with the results of our analytical model in a wide range of Er concentrations, we accurately estimate energy-transfer parameters for Er-doped silica glass and experimentally assess the validity of the model.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription