Abstract

Magneto-optical properties of photonic crystals (or bandgap materials) have been examined with respect to their possible applications for the control of electromagnetic radiation in integrated-optics devices. Theoretical studies of one-dimensional photonic crystals were conducted on the basis of the transfer-matrix method. For investigation of two- and three-dimensional photonic crystals we propose the original theoretical approach based on perturbation theory. Magneto-optical Faraday and Voigt effects have been studied near extremum points of photonic bands where their significant enhancement takes place. On the basis of the theory elaborated some experimental results are discussed. Experimentally obtained Faraday-rotation-angle-frequency dependence shows good agreement with our theoretical analysis.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adjustable magneto-optical isolators with high transmittance and large Faraday rotation

Mehdi Zamani, Majid Ghanaatshoar, and Hossein Alisafaee
J. Opt. Soc. Am. B 28(11) 2637-2642 (2011)

Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate

Yu. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee
J. Opt. Soc. Am. B 33(3) 393-404 (2016)

Metal-nanoparticle arrays on a magnetic garnet film for tunable plasmon-enhanced Faraday rotation

Evangelos Almpanis, Petros-Andreas Pantazopoulos, Nikolaos Papanikolaou, Vassilios Yannopapas, and Nikolaos Stefanou
J. Opt. Soc. Am. B 33(12) 2609-2616 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription