Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Proposal for high-precision atomic-parity-violation measurements by amplification of the asymmetry by stimulated emission in a transverse electric and magnetic field pump–probe experiment

Not Accessible

Your library or personal account may give you access

Abstract

Amplification by stimulated emission of radiation provides an interesting means for increasing the sensitivity of atomic-parity-violation (APV) measurements in a pump–probe configuration well adapted to the 6S-7S Cs transition. It takes advantage of the large number of atoms excited along the path of the pump beam. In the longitudinal electric field configuration currently exploited in our ongoing APV measurement, this number is limited only by the total voltage sustainable by the Cs vapor. To overcome this limit we consider, both theoretically and experimentally, the possibility of performing the measurements in a transverse electric field configuration requiring a much lower voltage. We discuss the necessarily different nature of the observable and the magnetoelectric optical effects that come into play. These condition modifications of the experimental configuration with, in particular, the application of a transverse magnetic field. We suggest the possibility of rotating the transverse direction of the fields so as to suppress systematic effects. With a long interaction length a precision reaching 0.1% in a quantum-noise-limited measurement can be expected, limited only by the necessity of operating below the threshold of spontaneous superradiant emission of the excited medium. Were we to approach this limit, however, we could greatly amplify the asymmetry using triggered superradiance.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Differential-mode atomic polarimetry with pulsed lasers: high-precision zero adjustment

J. Guéna, D. Chauvat, Ph. Jacquier, M. Lintz, M. D. Plimmer, and M. A. Bouchiat
J. Opt. Soc. Am. B 14(2) 271-284 (1997)

Fluorescence of rubidium in a submicrometer vapor cell: spectral resolution of atomic transitions between Zeeman sublevels in a moderate magnetic field

D. Sarkisyan, A. Papoyan, T. Varzhapetyan, K. Blushs, and M. Auzinsh
J. Opt. Soc. Am. B 22(1) 88-95 (2005)

Magnetic resonance line shapes in optical pumping and light-shift experiments in alkali atomic vapors

J. Skalla, S. Lang, and G. Wäckerle
J. Opt. Soc. Am. B 12(5) 772-781 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved