Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical bandgap modeling of two-dimensional square photonic crystals fabricated by the interference of three noncoplanar laser beams

Not Accessible

Your library or personal account may give you access

Abstract

We have investigated numerically the photonic bandgap (PBG) and spectral properties of two-dimensional (2-D) square structures fabricated by holographic lithography. Based on the block-iterative frequency-domain method and on the nonorthogonal finite-difference time-domain method, we have calculated band structure as a function of intensity threshold and shown that the PBG of 2-D titania arrays opens only for TM polarization and that directional PBGs can be obtained simultaneously for TE- and TM-polarized waves. In addition, we have shown that symmetry reduction of the atom introduced by holographic lithography can lift the band degeneracies and create an absolute PBG for a square lattice of dielectric rods in air.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps

L. Z. Cai, C. S. Feng, M. Z. He, X. L. Yang, X. F. Meng, G. Y. Dong, and X. Q. Yu
Opt. Express 13(11) 4325-4330 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved