Abstract

We have demonstrated picosecond optical parametric generation in reverse proton-exchanged waveguides in periodically poled lithium niobate with thresholds as low as 200 pJ. Near-transform-limited near-infrared pulses were obtained from cascaded optical parametric generation. For a 1.8-ps (FWHM) pump pulse at 769.6 nm, a saturated internal photon-conversion efficiency of 33% was obtained with 1 nJ of pump energy. The signal-wavelength tuning range was from 1.15 µm to 2.3 µm with a pump wavelength between 770 nm and 789.5 nm. Numerical simulations well predicted the mechanism for the transform-limited pulse generation. These results enable optical parametric generation devices with low threshold and good temporal properties with a simple single-pass setup.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg and R. C. Eckardt, eds., special issue on optical parametric devices, J. Opt. Soc. Am. B 12, 2084–2320 (1995).
  2. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
    [CrossRef]
  3. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494–1496 (1997).
    [CrossRef]
  4. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
    [CrossRef] [PubMed]
  5. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
    [CrossRef]
  6. T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
    [CrossRef]
  7. T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, “Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO 3 with >1 W average power,” Conference on Lazers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CTuO4.
  8. P. Di Trapani, A. Andreoni, C. Solcia, P. Foggi, R. Danielius, A. Dubietis, and A. Piskarskas, “Matching of group velocities in three-wave parametric interaction with femtosecond pulses and application to traveling-wave generators,” J. Opt. Soc. Am. B 12, 2237–2244 (1995).
    [CrossRef]
  9. K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80, 4492–4494 (2002).
    [CrossRef]
  10. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically-poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
    [CrossRef] [PubMed]
  11. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [CrossRef] [PubMed]
  12. J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
    [CrossRef]
  13. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [CrossRef]
  14. R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” Proceedings of the 16th LEOS Annual Meeting (IEEE, Piscataway, N.J., 2003), paper TuS4.
  15. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794–796 (1996).
    [CrossRef] [PubMed]
  16. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. G. Fermann, and D. Harter, “Ultrashort pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [CrossRef]
  17. T. Beddard, M. Ebrahimzadeh, T. D. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on periodi-cally poled lithium niobate,” Opt. Lett. 25, 1052–1054 (2000).
    [CrossRef]
  18. G. P. Agrawal, “Split-step Fourier method,” in Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001), pp. 51–55.
  19. A. V. Smith, “Group-velocity-matched three-wave mixing in birefringent crystals,” Opt. Lett. 26, 719–721 (2001).
    [CrossRef]
  20. R. Danielius, A. Piskarskas, P. Di Trapani, A. Andreoni, C. Solcia, and P. Foggi, “Visible pulses of 100 fs and 100 mJ from an upconverted parametric generator,” Appl. Opt. 35, 5336–5339 (1996).
    [CrossRef] [PubMed]
  21. J. K. Ranka, L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
    [CrossRef]
  22. W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
    [CrossRef]
  23. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
    [CrossRef]
  24. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
    [CrossRef]
  25. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28, 558–560 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (2)

2001 (2)

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

A. V. Smith, “Group-velocity-matched three-wave mixing in birefringent crystals,” Opt. Lett. 26, 719–721 (2001).
[CrossRef]

2000 (3)

1999 (1)

1998 (1)

W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
[CrossRef]

1997 (4)

1996 (2)

1995 (3)

1993 (1)

1991 (2)

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[CrossRef]

Andreoni, A.

Arbore, M. A.

Asobe, M.

Au, J. Aus. Der.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Baldi, P.

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80, 4492–4494 (2002).
[CrossRef]

Baltuska, A.

Banfi, G. P.

Beddard, T.

Bortz, M. L.

Bosenberg, W. R.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

Chou, M. H.

Danielius, R.

De Micheli, M.

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80, 4492–4494 (2002).
[CrossRef]

Di Trapani, P.

Dubietis, A.

Ebrahimzadeh, M.

Eckardt, R. C.

Fejer, M. M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. G. Fermann, and D. Harter, “Ultrashort pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
[CrossRef]

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
[CrossRef] [PubMed]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794–796 (1996).
[CrossRef] [PubMed]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically-poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef] [PubMed]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Fermann, M. E.

Fermann, M. G.

Foggi, P.

Fujimura, M.

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Gaeta, L.

Gallo, K.

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80, 4492–4494 (2002).
[CrossRef]

Galvanauskas, A.

Hanna, D. C.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Harter, D.

Imeshev, G.

Jackel, J. L.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[CrossRef]

Johnson, J. J.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[CrossRef]

Keller, U.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Kurz, J. R.

Leone, S. R.

W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Miyazawa, H.

Nishida, Y.

Osborn, D. L.

W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
[CrossRef]

Parameswaran, K. R.

Paschotta, R.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Piel, J.

Piskarskas, A.

Preusser, J.

W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
[CrossRef]

Pshenichnikov, M. S.

Ranka, J. K.

Reid, T. D.

Riedle, E.

Righini, R.

Ross, G. W.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Roussev, R. V.

Route, R. K.

Schade, W.

W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
[CrossRef]

Sibbett, W.

Smith, A. V.

Smith, P. G. R.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Solcia, C.

Stabinis, A.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Südmeyer, T.

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Wiersma, D. A.

Wilhelm, T.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80, 4492–4494 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494–2496 (2000).
[CrossRef]

Electron. Lett. (1)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

T. Südmeyer, J. Aus. Der. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D 34, 2433–2439 (2001).
[CrossRef]

Opt. Commun. (1)

W. Schade, D. L. Osborn, J. Preusser, and S. R. Leone, “Two-color cross-correlation of fs-laser pulses by two-photon induced photoconductivity for near and far field optical measurements,” Opt. Commun. 150, 27–32 (1998).
[CrossRef]

Opt. Lett. (11)

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
[CrossRef]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett. 28, 558–560 (2003).
[CrossRef] [PubMed]

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494–1496 (1997).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
[CrossRef] [PubMed]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically-poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef] [PubMed]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

T. Beddard, M. Ebrahimzadeh, T. D. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on periodi-cally poled lithium niobate,” Opt. Lett. 25, 1052–1054 (2000).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

J. K. Ranka, L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
[CrossRef]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794–796 (1996).
[CrossRef] [PubMed]

A. V. Smith, “Group-velocity-matched three-wave mixing in birefringent crystals,” Opt. Lett. 26, 719–721 (2001).
[CrossRef]

Other (3)

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” Proceedings of the 16th LEOS Annual Meeting (IEEE, Piscataway, N.J., 2003), paper TuS4.

G. P. Agrawal, “Split-step Fourier method,” in Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001), pp. 51–55.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, “Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO 3 with >1 W average power,” Conference on Lazers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CTuO4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of cascaded OPG. The SFG here is between the pump and the signal.

Fig. 2
Fig. 2

Transform-limited output ranges permitted by cascaded OPG in bulk LiNbO3, if we limit the idler wavelength to below 4 µm. The double-line shaded region is for the conventional OPG, and the single-line part is the extra region permitted by cascaded OPG.

Fig. 3
Fig. 3

Pump throughput and the internal signal photon-conversion efficiency in single-pass OPG with a 40-mm-long QPM grating and the absent of cascaded OPG. The pump was 1.8-ps (FWHM) pulse at 769.6 nm, and the signal wavelength was centered at 1350 nm.

Fig. 4
Fig. 4

Pump tuning curve of a RPE PPLN waveguide device (120 °C). The dotted curve is a simulation based on our waveguide dispersion model. The open circles are measurements. The output wavelength ranges from 1245 nm to 2005 nm for pump wavelength between 768.4 nm and 777.5 nm.

Fig. 5
Fig. 5

Internal pump throughput ratio and signal photon-conversion efficiency: (a) for 12-mm-long QPM grating, without cascaded OPG present; (b) for 18-mm-long QPM grating, with cascaded OPG present. Note the decrease in signal photon conversion and the increase in pump depletion in the presence of cascaded OPG.

Fig. 6
Fig. 6

(a) Optical spectrum analyzer traces; (b) cross-correlation traces for the signal from OPG. Both cover the same pump-power range from 0.3 nJ to 1.2 nJ. Note the shift of spectrum from conventional OPG to cascaded output with increasing pump energy. Cross-correlation traces also show both products.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

As/z+(1/us)As/t=iΓ1sAi*Apd(z)exp(iΔk1z)+iΓ2sAp*Agd(z)exp(iΔk2z),
Ai/z+(1/ui)Ai/t=iΓ1iAs*Apd(z)exp(iΔk1z),
Ap/z+(1/up)Ap/t=iΓ1pAsAid(z)exp(-iΔk1z)+iΓ2pAs*Agd(z)exp(iΔk2z),
Ag/z+(1/ug)Ag/t=iΓ2gAsApd(z)exp(-iΔk2z).

Metrics