Abstract

We performed high-resolution spectroscopy of Sm i in the near-UV transitions by using an extended-cavity violet diode laser. By adopting traditional Doppler-free saturated-absorption spectroscopy, we made accurate measurements of the isotope shifts for Sm i. For an atomic excitation laser we used an extended-cavity violet diode laser that was operated in the wavelength range 398–400 nm. As for the experimental results, Doppler-free spectra of the 399.002- and 399.102-nm transition lines of Sm were obtained and the isotope shifts between the even-mass isotopes were measured for the first time to our knowledge. Additionally, we used the King-plot method to check the consistency of the measured isotope shifts and to analyze them as mass shifts and field shifts. For a more quantitative analysis, we performed an ab initio calculation by using the relativistic multiconfiguration Dirac–Fock method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
    [CrossRef] [PubMed]
  2. M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
    [CrossRef]
  3. H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
    [CrossRef]
  4. K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  5. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
    [CrossRef]
  6. W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
    [CrossRef]
  7. H. Park, M. Lee, E. C. Jung, J. Yi, Y. Rhee, and J. Lee, “Isotope shifts of Sm I measured by diode-laser-based Doppler-free spectroscopy,” J. Opt. Soc. Am. B 16, 1169–1174 (1999).
    [CrossRef]
  8. R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
    [CrossRef]
  9. D. J. Lonsdale, A. P. Willis, and T. A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity,” Meas. Sci. Technol. 13, 488–498 (2002).
  10. J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245–247 (2003).
    [CrossRef] [PubMed]
  11. L. Hildebrandt, R. Knispel, S. Stry, J. R. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy,” Appl. Opt. 42, 2110–2118 (2003).
    [CrossRef] [PubMed]
  12. V. A. Komarovskii and Yu. M. Smirnov, “Experimental study of the absolute values of electronic transition probabilities in a samarium atom,” Opt. Spektrosk. 80, 357–361 (1996).
  13. W. H. King, “Comments on ‘Peculiarities of the isotope shift in the samarium spectrum, ’” J. Opt. Soc. Am. 53, 638–639 (1963).
    [CrossRef]
  14. W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).
  15. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon, New York, 1972).
  16. S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
    [CrossRef]
  17. M. Wilson, “Ab initio calculation of core relaxation and screening effects on |Ψ(0)|2 for Sm and Eu,” J. Phys. B 5, 218–228 (1972).
    [CrossRef]
  18. J. P. Desclaux, “Multiconfiguration relativistic Dirac–Fock program,” Comput. Phys. Commun. 9, 31–45 (1975).
    [CrossRef]

2003 (2)

2002 (2)

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

D. J. Lonsdale, A. P. Willis, and T. A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity,” Meas. Sci. Technol. 13, 488–498 (2002).

2001 (1)

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

2000 (1)

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

1999 (1)

1998 (1)

1996 (2)

H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
[CrossRef] [PubMed]

V. A. Komarovskii and Yu. M. Smirnov, “Experimental study of the absolute values of electronic transition probabilities in a samarium atom,” Opt. Spektrosk. 80, 357–361 (1996).

1992 (1)

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

1990 (1)

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

1980 (1)

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

1975 (1)

J. P. Desclaux, “Multiconfiguration relativistic Dirac–Fock program,” Comput. Phys. Commun. 9, 31–45 (1975).
[CrossRef]

1972 (1)

M. Wilson, “Ab initio calculation of core relaxation and screening effects on |Ψ(0)|2 for Sm and Eu,” J. Phys. B 5, 218–228 (1972).
[CrossRef]

1963 (1)

Allen, J. W.

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Bouazza, S.

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

Brand, H.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

Chang, J.-S.

H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
[CrossRef] [PubMed]

Conroy, R. S.

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Desclaux, J. P.

J. P. Desclaux, “Multiconfiguration relativistic Dirac–Fock program,” Comput. Phys. Commun. 9, 31–45 (1975).
[CrossRef]

Dholakia, K.

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Dinklage, A.

Duarte, A. E.

Duarte, F. J.

Endo, T.

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

Gough, D. S.

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

Hannaford, P.

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

Hewett, J. J.

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Hildebrandt, L.

Horiguchi, T.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Jin, W. G.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Jin, W.-G.

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

Jung, E. C.

Katsuragawa, H.

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

Kim, E. B.

Kim, J. I.

King, T. A.

D. J. Lonsdale, A. P. Willis, and T. A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity,” Meas. Sci. Technol. 13, 488–498 (2002).

King, W. H.

Knispel, R.

Komarovskii, V. A.

V. A. Komarovskii and Yu. M. Smirnov, “Experimental study of the absolute values of electronic transition probabilities in a samarium atom,” Opt. Spektrosk. 80, 357–361 (1996).

Lancaster, G. P. T.

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Lee, J.

H. Park, M. Lee, E. C. Jung, J. Yi, Y. Rhee, and J. Lee, “Isotope shifts of Sm I measured by diode-laser-based Doppler-free spectroscopy,” J. Opt. Soc. Am. B 16, 1169–1174 (1999).
[CrossRef]

H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
[CrossRef] [PubMed]

Lee, J.-H.

H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
[CrossRef] [PubMed]

Lee, M.

Lim, C.

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

Lokajczyk, T.

Lonsdale, D. J.

D. J. Lonsdale, A. P. Willis, and T. A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity,” Meas. Sci. Technol. 13, 488–498 (2002).

Macadam, K. B.

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Minowa, T.

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

Olivares, I. E.

Park, C. Y.

Park, H.

H. Park, M. Lee, E. C. Jung, J. Yi, Y. Rhee, and J. Lee, “Isotope shifts of Sm I measured by diode-laser-based Doppler-free spectroscopy,” J. Opt. Soc. Am. B 16, 1169–1174 (1999).
[CrossRef]

H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
[CrossRef] [PubMed]

Rhee, Y.

Sacher, J. R.

Sakata, H.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Schael, F.

Seibert, B.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

Sibbett, W.

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Smirnov, Yu. M.

V. A. Komarovskii and Yu. M. Smirnov, “Experimental study of the absolute values of electronic transition probabilities in a samarium atom,” Opt. Spektrosk. 80, 357–361 (1996).

Steinbach, A.

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Steudel, A.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

Stry, S.

Uematsu, H.

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

Wakasugi, M.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Wieman, C.

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Willis, A. P.

D. J. Lonsdale, A. P. Willis, and T. A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity,” Meas. Sci. Technol. 13, 488–498 (2002).

Wilson, M.

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

M. Wilson, “Ab initio calculation of core relaxation and screening effects on |Ψ(0)|2 for Sm and Eu,” J. Phys. B 5, 218–228 (1972).
[CrossRef]

Yeom, J. Y.

Yi, J.

Yoon, T. H.

Yoshizawa, Y.

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Am. J. Phys. (1)

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Appl. Opt. (1)

Comput. Phys. Commun. (1)

J. P. Desclaux, “Multiconfiguration relativistic Dirac–Fock program,” Comput. Phys. Commun. 9, 31–45 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. B (2)

S. Bouazza, D. S. Gough, P. Hannaford, M. Wilson, and C. Lim, “Isotope shift studies in Zr I by Doppler-free saturated absorption spectroscopy and pseudo-relativistic Hartree–Fock calculations,” J. Phys. B 35, 651–662 (2002).
[CrossRef]

M. Wilson, “Ab initio calculation of core relaxation and screening effects on |Ψ(0)|2 for Sm and Eu,” J. Phys. B 5, 218–228 (1972).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd, and Dy from optical isotope shifts,” J. Phys. Soc. Jpn. 59, 2700–2713 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

D. J. Lonsdale, A. P. Willis, and T. A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity,” Meas. Sci. Technol. 13, 488–498 (2002).

Opt. Commun. (1)

R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, and K. Dholakia, “Characterization of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Spektrosk. (1)

V. A. Komarovskii and Yu. M. Smirnov, “Experimental study of the absolute values of electronic transition probabilities in a samarium atom,” Opt. Spektrosk. 80, 357–361 (1996).

Phys. Rev. A (2)

H. Park, J. Lee, J.-H. Lee, and J.-S. Chang, “Selective photoionization of the ytterbium atom by coherent two-photon excitation,” Phys. Rev. A 53, 1751–1755 (1996).
[CrossRef] [PubMed]

W.-G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 63, 064501 (2001).
[CrossRef]

Z. Phys. A (1)

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: isotope shifts and charges in mean square nuclear charge radii,” Z. Phys. A 296, 281–286 (1980).
[CrossRef]

Other (2)

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).

I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for saturated-absorption spectroscopy of Sm i: B.S.’s beam splitters; P.D., photodiode; F–P, Fabry–Perot.

Fig. 2
Fig. 2

ECDL with the Littrow configuration: PZT, piezoelectric transducer.

Fig. 3
Fig. 3

Linewidth of the violet ECDL measured with a Fabry–Perot interferometer with a free spectral range of 1 GHz.

Fig. 4
Fig. 4

The two transitions studied in this paper and the associated atomic levels of Sm i.

Fig. 5
Fig. 5

Measured Doppler-free spectrum of the 399.002-nm transition of Sm i.

Fig. 6
Fig. 6

Measured Doppler-free spectrum of the 399.102-nm transition of Sm i.

Fig. 7
Fig. 7

King plot of the 399.002-nm transition.

Tables (1)

Tables Icon

Table 1 Measured Isotope Shifts, SMSs, and FSs of Sm Transitions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δviA1A2=FiλA1A2+A2-A1A1A2vi1836.1+Mi.
FS=πΔ|Ψs(0)|2 a03Zf(Z)δr2=Ef(Z)δr2,

Metrics