Abstract

Experimental investigations of two schemes for polarization-direction-insensitive spectral conversion by use of four-wave mixing in a semiconductor optical amplifier (SOA) are reported. One scheme that utilizes an SOA with a linearly polarized signal and a single copropagating circularly polarized pump is, as far as we are aware, the simplest such scheme that has been reported to date. A theoretical analysis of this novel scheme is also presented. Experimental investigations of that scheme are compared with measurements of the performance of a previously proposed scheme, which involves the use of a single SOA and two orthogonal counterpropagating pump beams. We observe that polarization-direction-insensitive conversion is far more efficient in the new scheme described here. Within the observed detuning range, the difference in efficiency between the two schemes is found to increase from 6 to 18 dB as the detuning is increased. The corresponding increase in the difference of the signal-to-background ratio between the two schemes is from approximately 2 to 16 dB.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ishikawa, S. Watanabe, and H. Kuwatsuka, “Wavelength conversion technologies for photonic network systems,” Fujitsu Sci. Technol. 35, 126–138 (1999).
  2. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
    [CrossRef]
  3. A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
    [CrossRef]
  4. J. P. R. Lacey, S. J. Madden, and M. A. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photonics Technol. Lett. 9, 1355–1357 (1997).
    [CrossRef]
  5. R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
    [CrossRef]
  6. A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
    [CrossRef]
  7. I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
    [CrossRef]
  8. M. W. K. Mak, H. K. Tsang, and K. Chan, “Widely tuneable polarization-independent all-optical wavelength converter using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 12, 525–527 (2000).
    [CrossRef]
  9. G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
    [CrossRef]
  10. K. Ovsthus and V. Khalfin, “A novel method for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 527–529 (1996).
    [CrossRef]
  11. K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
    [CrossRef]
  12. R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
    [CrossRef]
  13. J. M. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 11, 1123–1125 (1999).
    [CrossRef]
  14. J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
    [CrossRef]
  15. J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converter based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 1355–1357 (1997).
  16. G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5, 147–158 (1988).
    [CrossRef]
  17. J. M. Tang and K. A. Shore, “Influence of probe depletion and cross-gain modulation on four-wave mixing of picosecond optical pulses in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 1563–1565 (1998).
    [CrossRef]
  18. Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
    [CrossRef]

2003 (1)

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
[CrossRef]

2000 (1)

M. W. K. Mak, H. K. Tsang, and K. Chan, “Widely tuneable polarization-independent all-optical wavelength converter using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 12, 525–527 (2000).
[CrossRef]

1999 (3)

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

H. Ishikawa, S. Watanabe, and H. Kuwatsuka, “Wavelength conversion technologies for photonic network systems,” Fujitsu Sci. Technol. 35, 126–138 (1999).

J. M. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 11, 1123–1125 (1999).
[CrossRef]

1998 (3)

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

J. M. Tang and K. A. Shore, “Influence of probe depletion and cross-gain modulation on four-wave mixing of picosecond optical pulses in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 1563–1565 (1998).
[CrossRef]

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

1997 (3)

J. P. R. Lacey, S. J. Madden, and M. A. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photonics Technol. Lett. 9, 1355–1357 (1997).
[CrossRef]

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converter based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 1355–1357 (1997).

1996 (1)

K. Ovsthus and V. Khalfin, “A novel method for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 527–529 (1996).
[CrossRef]

1995 (1)

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

1994 (2)

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

1993 (2)

K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
[CrossRef]

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[CrossRef]

1988 (1)

Agrawal, G. P.

Bandyopadhyay, S.

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
[CrossRef]

Caroubalos, C.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Chan, K.

M. W. K. Mak, H. K. Tsang, and K. Chan, “Widely tuneable polarization-independent all-optical wavelength converter using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 12, 525–527 (2000).
[CrossRef]

Contestabile, G.

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

D’Ottavi, A.

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Dall’Ara, R.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Eckner, J.

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Geraghty, D. F.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

Guekos, G.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Hasegawa, T.

K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
[CrossRef]

Helmolt, Cv.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Hermes, Th.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Hilbk, U.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Hong, Y.

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
[CrossRef]

Hunziker, G.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

Inoue, K.

K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
[CrossRef]

Ishikawa, H.

H. Ishikawa, S. Watanabe, and H. Kuwatsuka, “Wavelength conversion technologies for photonic network systems,” Fujitsu Sci. Technol. 35, 126–138 (1999).

Jopson, R. M.

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[CrossRef]

Khalfin, V.

K. Ovsthus and V. Khalfin, “A novel method for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 527–529 (1996).
[CrossRef]

Küller, L.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Kuwatsuka, H.

H. Ishikawa, S. Watanabe, and H. Kuwatsuka, “Wavelength conversion technologies for photonic network systems,” Fujitsu Sci. Technol. 35, 126–138 (1999).

Lacey, J. P. R.

J. P. R. Lacey, S. J. Madden, and M. A. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photonics Technol. Lett. 9, 1355–1357 (1997).
[CrossRef]

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converter based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 1355–1357 (1997).

Lee, R. B.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

Ludwig, R.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Madden, S. J.

J. P. R. Lacey, S. J. Madden, and M. A. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photonics Technol. Lett. 9, 1355–1357 (1997).
[CrossRef]

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converter based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 1355–1357 (1997).

Magari, K.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Mak, M. W. K.

M. W. K. Mak, H. K. Tsang, and K. Chan, “Widely tuneable polarization-independent all-optical wavelength converter using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 12, 525–527 (2000).
[CrossRef]

Martelli, F.

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Mathur, A.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

Mecozzi, A.

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Meißner, P.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Miller, B. I.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Newkirk, M. A.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Oda, K.

K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
[CrossRef]

Ovsthus, K.

K. Ovsthus and V. Khalfin, “A novel method for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 527–529 (1996).
[CrossRef]

Paiella, R.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

Park, N.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Pieper, W.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Raub, F.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Roditi, E.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Romeo, F. Cara

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Schnabel, R.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Scotti, S.

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Shore, K. A.

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
[CrossRef]

J. M. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 11, 1123–1125 (1999).
[CrossRef]

J. M. Tang and K. A. Shore, “Influence of probe depletion and cross-gain modulation on four-wave mixing of picosecond optical pulses in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 1563–1565 (1998).
[CrossRef]

Spano, P.

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

Spencer, P. S.

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
[CrossRef]

Sphicopoulos, T.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Summerfield, M. A.

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converter based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 1355–1357 (1997).

J. P. R. Lacey, S. J. Madden, and M. A. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photonics Technol. Lett. 9, 1355–1357 (1997).
[CrossRef]

Syvridis, D.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Tang, J. M.

J. M. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 11, 1123–1125 (1999).
[CrossRef]

J. M. Tang and K. A. Shore, “Influence of probe depletion and cross-gain modulation on four-wave mixing of picosecond optical pulses in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 1563–1565 (1998).
[CrossRef]

Tench, R. E.

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[CrossRef]

Tersigni, A.

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

Toba, H.

K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
[CrossRef]

Tomkos, I.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Tsang, H. K.

M. W. K. Mak, H. K. Tsang, and K. Chan, “Widely tuneable polarization-independent all-optical wavelength converter using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 12, 525–527 (2000).
[CrossRef]

Vahala, K. J.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Verdiell, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

Watanabe, S.

H. Ishikawa, S. Watanabe, and H. Kuwatsuka, “Wavelength conversion technologies for photonic network systems,” Fujitsu Sci. Technol. 35, 126–138 (1999).

Weber, H. G.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Westphal, F. J.

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

Zacharopoulos, I.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Zhou, J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Ziari, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

A. D’Ottavi, A. Mecozzi, S. Scotti, F. Cara Romeo, F. Martelli, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation,” Appl. Phys. Lett. 67, 2753–2755 (1995).
[CrossRef]

G. Contestabile, A. D’Ottavi, F. Martelli, A. Mecozzi, P. Spano, and A. Tersigni, “Polarization-insensitive four-wave mixing in a bidirectional semiconductor optical amplifier,” Appl. Phys. Lett. 75, 3914–3916 (1999).
[CrossRef]

Electron. Lett. (2)

K. Inoue, T. Hasegawa, K. Oda, and H. Toba, “Multichannel frequency conversion experiment using fibre four-wave mixing,” Electron. Lett. 29, 1708–1710 (1993).
[CrossRef]

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[CrossRef]

Fujitsu Sci. Technol. (1)

H. Ishikawa, S. Watanabe, and H. Kuwatsuka, “Wavelength conversion technologies for photonic network systems,” Fujitsu Sci. Technol. 35, 126–138 (1999).

IEEE J. Quantum Electron. (1)

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39, 1123–1128 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146–1155 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (9)

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30 nm interval,” IEEE Photonics Technol. Lett. 10, 952–954 (1998).
[CrossRef]

J. P. R. Lacey, S. J. Madden, and M. A. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photonics Technol. Lett. 9, 1355–1357 (1997).
[CrossRef]

R. Schnabel, U. Hilbk, Th. Hermes, P. Meißner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F. J. Westphal, R. Ludwig, L. Küller, and H. G. Weber, “Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier,” IEEE Photonics Technol. Lett. 6, 56–58 (1994).
[CrossRef]

K. Ovsthus and V. Khalfin, “A novel method for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 527–529 (1996).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).
[CrossRef]

M. W. K. Mak, H. K. Tsang, and K. Chan, “Widely tuneable polarization-independent all-optical wavelength converter using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 12, 525–527 (2000).
[CrossRef]

J. M. Tang and K. A. Shore, “Influence of probe depletion and cross-gain modulation on four-wave mixing of picosecond optical pulses in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 1563–1565 (1998).
[CrossRef]

J. M. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 11, 1123–1125 (1999).
[CrossRef]

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor travelling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photonics Technol. Lett. 6, 984–987 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, “Tunability of polarization-insensitive wavelength converter based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 1355–1357 (1997).

J. Opt. Soc. Am. B (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme 1, experimental setup: TL, tunable laser (signal); DFB, distributed-feedback laser; ISO, isolator; L1 and L2, lenses; λ/2, half-wave plate; PC1–PC4, in-line polarization controllers; BC1 and BC2, beam couplers; ATTN, in-line fiber attenuator; CIRC1 and CIRC2, circulators; SOA, semiconductor optical amplifier; OSA, optical-spectrum analyzer.

Fig. 2
Fig. 2

Scheme 2, experimental setup: The definitions are the same as those in Fig. 1.

Fig. 3
Fig. 3

Variations of the converted signal power with signal polarization direction at different wavelength detunings (in nanometers) in Scheme 1.

Fig. 4
Fig. 4

Typical spectrum for Scheme 1 of the converted signal, pump, and the signal observed through the circulator (CIRC1). The spectrum is taken at 0.35-nm detuning.

Fig. 5
Fig. 5

Typical spectrum for Scheme 2 of the transmitted spectrally converted signal, pump, signal, and spectrally converted pump observed through the circulator (CIRC2). The spectrum is taken at a 0.66-nm detuning.

Fig. 6
Fig. 6

Spectrally converted signal of Scheme 2 at a 16-nm detuning.

Fig. 7
Fig. 7

Variation of the converted signal power with signal polarization direction at different wavelength detunings in Scheme 2.

Fig. 8
Fig. 8

Comparison of the experimentally observed SBR and η in Scheme 2 and Scheme 1.

Fig. 9
Fig. 9

Polarization sensitivity of the spectrally converted signal at different wavelength detunings of the signal from the pump for Scheme 1 and Scheme 2.

Fig. 10
Fig. 10

Elliptically polarized signal. The major and minor axes of the ellipse are directed along i and j, respectively.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

Ep=xPx1/2 exp[-i(ω0t-k0z+ϕ1)]+yPy1/2 exp[-i(ω0t-k0z+ϕ2)],
Ex=xPx1/2 exp[-i(ω0t-k0z+ϕ1)],
Ey=yPx1/2 exp[-i(ω0t-k0z+ϕ2)],
Es=xPs1/2 cos θ exp[-i(ωst-ksz+ϕs)]+yPs1/2 sin θ exp[-i(ωst-ksz+ϕs)],
Exsx=xPxPs1/2Gx3/2 cos θr(ωp-ωs)×exp{-i[(2ωp-ωs)t-(2kp-ks)z+2ϕ1-ϕs]},
Eysx=x(PyPsPx)1/2GyGx1/2 sin θr(ωp-ωs)×exp{-i[(2ωp-ωs)t-(2kp-ks)z+ϕ1+ϕ2-ϕs]},
Eysy=yPyPs1/2Gy3/2 sin θr(ωp-ωs)×exp{-i[(2ωp-ωs)t-(2kp-ks)z+2ϕ2-ϕs]},
Exsy=y(PxPsPy)1/2GxGy1/2 cos θr(ωp-ωs)×exp{-i[(2ωp-ωs)t-(2kp-ks)z+ϕ1+ϕ2-ϕs]},
Exsx=xPxPs1/2A cos θ exp[-i(2ϕ1-ϕs)],
Eysx=x(PyPsPx)1/2A sin θ×exp[-i(ϕ1+ϕ2-ϕs)],
Eysy=yPyPs1/2A sin θ exp[-i(2ϕ2-ϕs)],
Exsy=y(PxPsPy)1/2A cos θ×exp[-i(ϕ1+ϕ2-ϕs)],
Ex=(Exsx+Eysx)=PxPs1/2A cos θ exp[-i(2ϕ1-ϕs)]+(PyPsPx)1/2A sin θ exp[-i(ϕ1+ϕ2-ϕs)].
Ey=(Eysy+Exsy)=PyPs1/2A sin θ exp[-i(2ϕ2-ϕs)]+(PxPsPy)1/2A cos θ exp[-i(ϕ1+ϕ2-ϕs)].
Pc=Ex·Ex*+Ey·Ey*.
Px=Py=Pp,ϕ2-ϕ1=±(π/2).
Ex=Pp3/2G3/2r(ωp-ωs)exp{-i[(2ωp-ωs)t-(2kp-ks)z+(2ϕ1-ϕs±θ)]},
Ey=Pp3/2G3/2r(ωp-ωs)exp-i(2ωp-ωs)t-(2kp-ks)z+2ϕ1-ϕs±θ±π2.
Pc=2Pp2PsG3R(ωp-ωs),
Pc=(1/2)P2PsG3R(ωp-ωs).
Pc=PfPsPbG3R(ωp-ωs)T2(ΔkL),
Pc|max=(1/4)P2PsG3R(ωp-ωs)T2(ΔkL)(1/4)P2PsG3R(ωp-ωs).
Es=i(Ps1)1/2 exp[-i(ωst-ksz+ϕs1)]+j(Ps2)1/2 exp[-i(ωst-ksz+ϕs2)],
ϕs2-ϕs1=±(π/2).
Es1=i(Ps1)1/2 exp[-i(ωst-ksz+ϕs1)],
Es2=j(Ps2)1/2 exp[-i(ωst-ksz+ϕs2)],
Exs1x=x B(Ps1)1/2 cos θ1 exp(iϕs1),
Eys1x=x B(Ps1)1/2 sin θ1 exp[-i(-ϕs1±π/2)],
Exs1y=yB(Ps1)1/2 cos θ1 exp[-i(-ϕs1±π/2)],
Eys1y=yB(Ps1)1/2 sin θ1 exp[-i(-ϕs1±π)],
Exs2x=x B(Ps2)1/2 cos θ2 exp(iϕs2)=-x B(Ps2)1/2 sin θ1 exp(iϕs2),
Eys2x=x B(Ps2)1/2 sin θ2 exp[-i(-ϕs2±π/2)]=x B(Ps2)1/2 cos θ1 exp[-i(-ϕs2±π/2)],
Exs2y=yB(Ps2)1/2 cos θ2 exp[-i(-ϕs2±π/2)]=-yB(Ps2)1/2 sin θ1 exp[-i(-ϕs2±π/2)],
Eys2y=yB(Ps2)1/2 sin θ2 exp[-i(-ϕs2±π)]=yB(Ps2)1/2 cos θ1 exp[-i(-ϕs2±π)],
Pc=(Exs1x+Eys1x+Exs2x+Eys2x)·(Exs1x+Eys1x+Exs2x+Eys2x)*+(Eys1y+Exs1y+Eys2y+Exs2y)·(Eys1y+Eys1y+Eys2y+Exs2y)*=BB*[2Ps1+2Ps2±4(Ps1Ps2)1/2 sin(ϕs2-ϕs1)]=2Pp2G3R(ωp-ωs)[Ps1+Ps2±2(Ps1Ps2)1/2 sin(ϕs2-ϕs1)].
Pc=2Pp2PsG3R(ωp-ωs)±4Pp2G3R(ωp-ωs)×(Ps1Ps2)1/2 sin(ϕs2-ϕs1),

Metrics