Abstract

A thermally induced spatial and temporal dephasing model of second-harmonic generation has been developed to describe the conversion efficiency and its degradation of periodically poled potassium titanium phosphate (PPKTP) in a cw, single-pass frequency conversion system. The model confirms the experimental data that show that second-harmonic power greater than 800 mW (15 kW/cm2) causes two-photon nonlinear absorption, leading to time-dependent photochromic damage in PPKTP. This added absorption degrades the conversion efficiency from an initial value of 19% to an unrecoverable asymptotic value of ∼8% in 2 h at 145 kW/cm2 of pump intensity through thermal detuning phase mismatch.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).
  2. W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
    [CrossRef]
  3. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
    [CrossRef]
  4. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
    [CrossRef]
  5. A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
    [CrossRef]
  6. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-Efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [CrossRef]
  7. M. Katz, R. Route, D. Hum, R. Roussev, K. Parameswaran, V. Kondilenko, G. Miller, and M. Fejer, “Near-stoichiometric 1% Mg-doped LiNbO3 and stoichiometric LiTaO3 fabricated by vapor transport equilibration for frequency conversion,” in Stanford Photonics Research Center Annual Report (Stanford Photonics Research Center, Stanford, Calif., 2003).
  8. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
    [CrossRef]
  9. S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000).
    [CrossRef]
  10. V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
    [CrossRef]
  11. V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
    [CrossRef]
  12. V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
    [CrossRef]
  13. X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
    [CrossRef]
  14. B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
    [CrossRef]
  15. B. Boulanger, J.-P. Fève, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
    [CrossRef]
  16. R. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  17. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  18. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  19. G. D. Boyd and D. A. Kleinman, “Parametic interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  20. D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron. 23, 2238–2251 (1987).
    [CrossRef]
  21. A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
    [CrossRef]
  22. C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11, 774–785 (1994).
    [CrossRef]
  23. Eksma Co. KTP product specification, www.eksma.lt, Vilnius, Lithuania.
  24. A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
    [CrossRef]
  25. Cristal Laser KTP product specification, www.cristal-laser-fr, Chaligny, France.

2003 (1)

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

2000 (2)

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000).
[CrossRef]

B. Boulanger, J.-P. Fève, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[CrossRef]

1999 (3)

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

1998 (2)

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
[CrossRef]

1997 (3)

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-Efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

1996 (2)

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

1994 (2)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1987 (1)

D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron. 23, 2238–2251 (1987).
[CrossRef]

1986 (1)

W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

1984 (1)

Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametic interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Alexandrovski, A. A.

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

Arie, A.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Arvidsson, G.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Batchko, R. G.

Bayramian, A. J.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

Bhardwaj, M.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Boulanger, B.

B. Boulanger, J.-P. Fève, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[CrossRef]

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametic interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Byer, R. L.

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-Efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Castillo, V. K.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

Chen, Q.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Chernikov, S. V.

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000).
[CrossRef]

Chowdhury, A.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Denks, V.

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

Ding, Y. J.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Dudelzak, A.

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

Eger, D.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Eimerl, D.

D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron. 23, 2238–2251 (1987).
[CrossRef]

Fejer, M. M.

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-Efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Feng, D.

W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).

Feve, J. P.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

Fève, J.-P.

Foulon, G.

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

Geng, Z.

W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Guillien, Y.

Henesian, M. A.

Henriksson, P.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Karlsson, H.

V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Katz, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Khurgin, J. B.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametic interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Laurell, F.

V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Liu, Y.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

Mahal, V.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

Marshall, C. D.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11, 774–785 (1994).
[CrossRef]

Maslov, V. A.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
[CrossRef]

Menaert, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

Mikhailov, V. A.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
[CrossRef]

Miller, G. D.

Ming, N.

Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).

Mu, X.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

Mürk, V.

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

Myers, L. E.

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

Ng, H. M.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Oron, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Pasiskevicius, V.

Payne, S. A.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11, 774–785 (1994).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Popov, S. V.

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000).
[CrossRef]

Powell, H. T.

Proulx, P.

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

Quarles, G. J.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

Risk, W. P.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Rosenman, G.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

Route, R. K.

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

Shaunin, O. P.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
[CrossRef]

Shcherbakov, I. A.

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
[CrossRef]

Skliar, A.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Speth, J. A.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11, 774–785 (1994).
[CrossRef]

Taylor, J. R.

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000).
[CrossRef]

Tellefsen, J. A.

Tulloch, W. M.

Vassiltsenko, V.

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

Wang, J.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

Wang, S.

Wang, W.

W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Wei, J.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

Weimann, N. G.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Weise, D. R.

Wu, J. H.

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

Xue, Y.

Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).

Zhou, Q.

W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Zhu, J.

Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Chin. Phys. (1)

Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).

Electron. Lett. (2)

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron. 23, 2238–2251 (1987).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametic interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Cryst. Growth (1)

W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

J. Lumin. (1)

A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. B (1)

V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998).
[CrossRef]

Opt. Commun. (2)

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Proc. SPIE (2)

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999).
[CrossRef]

A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999).
[CrossRef]

Quantum Electron. (1)

V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997).
[CrossRef]

Other (4)

R. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

M. Katz, R. Route, D. Hum, R. Roussev, K. Parameswaran, V. Kondilenko, G. Miller, and M. Fejer, “Near-stoichiometric 1% Mg-doped LiNbO3 and stoichiometric LiTaO3 fabricated by vapor transport equilibration for frequency conversion,” in Stanford Photonics Research Center Annual Report (Stanford Photonics Research Center, Stanford, Calif., 2003).

Cristal Laser KTP product specification, www.cristal-laser-fr, Chaligny, France.

Eksma Co. KTP product specification, www.eksma.lt, Vilnius, Lithuania.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Experimental (filled circle) and predicted (solid curve) SHG power as a function of pump power. Dashed curve represents the predicted SHG power without dephasing effects (αL=0).

Fig. 3
Fig. 3

Experimental (dashed curve) and theoretical (solid curve) SHG power versus time with P1ω=6.8 W.

Fig. 4
Fig. 4

Experimental (dotted curve) and theoretical (solid curve) SHG power versus time for various input powers. Alignment factors δT were 0, -0.1, -0.1, 0, -0.4 °C from low to high powers.

Fig. 5
Fig. 5

Temperature tuning curve for different input powers for (a) undamaged and (b) damaged spots.

Fig. 6
Fig. 6

Measured (symbols) and calculated (curves) QPM temperature detuning as a function of pump power before damage (open circles, solid curve) and after damage (filled circles, dashed curve).

Fig. 7
Fig. 7

SHG intensity versus pump intensity for confocal focusing (solid curve, w0=57 µm) and strong focusing (dashed curve, w0=42 µm).

Fig. 8
Fig. 8

Theoretical calculated conversion efficiency versus pump power at t=0 (dashed curve) and t=1000 h (solid curve) for hydrothermal PPKTP with αL=αs=0.22%/cm.

Tables (1)

Tables Icon

Table 1 Parameters Used for the Theoretical Calculations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P2ω=fgLηP1ω2,
g=2Hω13dq2π0c4n1n2,
η(ΔT)=sinc2βTL2ΔT,
ΔT=αP4πK1+2 lnaw0,
dNdt=βI2(Ns-N),
αN(t)=αs[1-exp(-βI2t)],
P2ω=fgP1ω2  sinc2βTL21+2 ln(a/w0)4πK×{αL+αs[1-exp(-βI2ω2t)]}P2ω+δT×1-exp(-{αL+αs[1-exp(-βI2ω2t)]}L)αL+αs[1-exp(-βI2ω2t)].

Metrics