Abstract

We present precise and absolute measurements of full complex third-order optical susceptibility on different fused-silica and original glasses composed of tellurium, titanium, and niobium erbium. These materials are designed to be the key point for applications ranging from high-power laser systems to optoelectronics; their nonlinear index of refraction is a major property and thus must be accurately known. A large dispersion (more than 30%) of the nonlinear index of fused-silica glasses was found. Measurements on tellurium glasses have shown strong nonlinearities, to be linked to the configurations of their cations and anions.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [CrossRef] [PubMed]
  2. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  3. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
    [CrossRef]
  4. D. J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48, 1150–1152 (1986).
    [CrossRef]
  5. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
    [CrossRef]
  6. K. Minoshima, M. Taiji, and T. Kobayashi, “Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility,” Opt. Lett. 16, 1683–1685 (1991).
    [CrossRef] [PubMed]
  7. M. O. Martin, L. Canioni, and L. Sarger, “Measurements of complex third-order optical susceptibility in a collinear pump–probe experiment,” Opt. Lett. 23, 1874–1876 (1998).
    [CrossRef]
  8. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
    [CrossRef]
  9. R. W. Hellwarth, Third-Order Susceptibilities of Liquids and Solids, Part I of Vol. 5 of Monographs: Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds. (Pergamon, New York, 1977).
  10. A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).
  11. L. Canioni, “Liquids and glasses nonlinearities properties analyzed by femtosecond interferometry,” Ph.D. thesis (University of Bordeaux, Bordeaux, France, 1994).
  12. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  13. R. Adair, L. L. Chase, and S. A. Payne, “Dispersion of the nonlinear refractive index of optical crystals,” Opt. Mater. (Amsterdam, Neth.) 1, 185–194 (1992).
  14. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
    [CrossRef]
  15. N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
    [CrossRef]
  16. I. Kang, T. Krauss, F. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
    [CrossRef]
  17. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
    [CrossRef] [PubMed]
  18. D. Milan, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
    [CrossRef]
  19. C. McIntosh, J. Toulouse, and P. Tick, “The Boson peak in alkali silicate glasses,” J. Non-Cryst. Solids 222, 335–341 (1997).
    [CrossRef]
  20. R. H. Stolen and W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on the propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9, 565–573 (1992).
    [CrossRef]
  21. R. W. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
    [CrossRef]
  22. S. Smolorz and F. Wise, “Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling,” Opt. Lett. 24, 1103–1105 (1999).
    [CrossRef]
  23. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  24. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
    [CrossRef]
  25. M. E. Lines, “Oxide glasses for fast photonic switching: a comparative study,” J. Appl. Phys. 69, 6876–6884 (1991).
    [CrossRef]
  26. M. E. Lines, “Bond-orbital theory of linear and nonlinear electronic response in ionic crystals. II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
    [CrossRef]
  27. A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
    [CrossRef]
  28. S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
    [CrossRef]
  29. E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
    [CrossRef]
  30. B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
    [CrossRef]
  31. S. Montant, “Second and third order nonlinear studies in glasses,” Ph.D. thesis (University of Bordeaux, Bordeaux, France, 1999).
  32. T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).
  33. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
    [CrossRef] [PubMed]

2002 (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
[CrossRef]

2000 (1)

1999 (2)

S. Smolorz and F. Wise, “Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling,” Opt. Lett. 24, 1103–1105 (1999).
[CrossRef]

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

1998 (3)

1997 (4)

C. McIntosh, J. Toulouse, and P. Tick, “The Boson peak in alkali silicate glasses,” J. Non-Cryst. Solids 222, 335–341 (1997).
[CrossRef]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
[CrossRef]

T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

1996 (1)

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

1995 (3)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef] [PubMed]

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

I. Kang, T. Krauss, F. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
[CrossRef]

1992 (3)

1991 (3)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

K. Minoshima, M. Taiji, and T. Kobayashi, “Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility,” Opt. Lett. 16, 1683–1685 (1991).
[CrossRef] [PubMed]

M. E. Lines, “Oxide glasses for fast photonic switching: a comparative study,” J. Appl. Phys. 69, 6876–6884 (1991).
[CrossRef]

1990 (3)

M. E. Lines, “Bond-orbital theory of linear and nonlinear electronic response in ionic crystals. II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[CrossRef]

1986 (1)

D. J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48, 1150–1152 (1986).
[CrossRef]

1978 (1)

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

1975 (1)

R. W. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Dispersion of the nonlinear refractive index of optical crystals,” Opt. Mater. (Amsterdam, Neth.) 1, 185–194 (1992).

Aggarwal, I. D.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
[CrossRef]

I. Kang, T. Krauss, F. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
[CrossRef]

Baltuska, A.

Berthereau, A.

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

Blanchandin, S.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Boling, N. L.

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Borrelli, N. F.

Canioni, L.

M. O. Martin, L. Canioni, and L. Sarger, “Measurements of complex third-order optical susceptibility in a collinear pump–probe experiment,” Opt. Lett. 23, 1874–1876 (1998).
[CrossRef]

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

Cardinal, T.

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).

Champarnaud-Mesjard, J. C.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Dispersion of the nonlinear refractive index of optical crystals,” Opt. Mater. (Amsterdam, Neth.) 1, 185–194 (1992).

Cheong, S.-W.

Cherlow, J.

R. W. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Ducasse, A.

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

Duchesne, C.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

Fargin, E.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

Franco, M. A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Frit, B.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Gaeta, A. L.

Glass, A. J.

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Grillon, G.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Hagan, D. J.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Hwang, H. Y.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
[CrossRef]

Jeansannetas, B.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Kang, I.

Katsufuji, T.

Kobayashi, T.

Krauss, T.

Le Blanc, C.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Le Boiteux, S.

T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

Le Flem, G.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

Lenz, G.

Lines, M. E.

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
[CrossRef]

M. E. Lines, “Oxide glasses for fast photonic switching: a comparative study,” J. Appl. Phys. 69, 6876–6884 (1991).
[CrossRef]

M. E. Lines, “Bond-orbital theory of linear and nonlinear electronic response in ionic crystals. II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
[CrossRef]

Marchet, P.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Martin, M. O.

McIntosh, C.

C. McIntosh, J. Toulouse, and P. Tick, “The Boson peak in alkali silicate glasses,” J. Non-Cryst. Solids 222, 335–341 (1997).
[CrossRef]

Merle-Méjean, T.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Milan, D.

Minoshima, K.

Moss, D. J.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48, 1150–1152 (1986).
[CrossRef]

Mysyrowicz, A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Nazabal, V.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Nibbering, E. T. J.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Olazcuaga, R.

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

Owyoung, A.

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Dispersion of the nonlinear refractive index of optical crystals,” Opt. Mater. (Amsterdam, Neth.) 1, 185–194 (1992).

Prade, B. S.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Pshenichnikov, M. S.

Ranka, J. K.

Said, A. A.

Sanghera, J. S.

Sarger, L.

M. O. Martin, L. Canioni, and L. Sarger, “Measurements of complex third-order optical susceptibility in a collinear pump–probe experiment,” Opt. Lett. 23, 1874–1876 (1998).
[CrossRef]

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

Segonds, P.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

Sheik-Bahae, M.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48, 1150–1152 (1986).
[CrossRef]

Slusher, R. E.

Smolorz, S.

Spälter, S.

Stolen, R. H.

Taiji, M.

Tang, T. T.

R. W. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

Thomas, P.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Tick, P.

C. McIntosh, J. Toulouse, and P. Tick, “The Boson peak in alkali silicate glasses,” J. Non-Cryst. Solids 222, 335–341 (1997).
[CrossRef]

Tomlinson, W. J.

Toulouse, J.

C. McIntosh, J. Toulouse, and P. Tick, “The Boson peak in alkali silicate glasses,” J. Non-Cryst. Solids 222, 335–341 (1997).
[CrossRef]

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef] [PubMed]

van Driel, H. M.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[CrossRef]

D. J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48, 1150–1152 (1986).
[CrossRef]

Van Stryland, E. W.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef] [PubMed]

Videau, J. J.

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

Villesuzanne, A.

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

Wang, J.

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wei, T. H.

Wiersma, D. A.

Wise, F.

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
[CrossRef]

Young, J.

Zimmermann, J.

Ann. Chim. Sci. Mater. (1)

E. Fargin, A. Berthereau, T. Cardinal, J. J. Videau, A. Villesuzanne, and G. Le Flem, “Contribution of theoretical chemistry to the investigation of optical non linearities in glasses,” Ann. Chim. Sci. Mater. 23, 27–32 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon,” Appl. Phys. Lett. 48, 1150–1152 (1986).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge—As—Se and Ge—As—S—Se glasses for all-optical switching,” IEEE Photonics Technol. Lett. 14, 822–824 (2002).
[CrossRef]

J. Appl. Phys. (2)

M. E. Lines, “Oxide glasses for fast photonic switching: a comparative study,” J. Appl. Phys. 69, 6876–6884 (1991).
[CrossRef]

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81, 1481–1487 (1997).
[CrossRef]

J. Non-Cryst. Solids (2)

T. Cardinal, E. Fargin, G. Le Flem, and S. Le Boiteux, “Correlations between structural properties of Nb2O5—NaPO3—Na2B4O7 glasses and nonlinear optical activities,” J. Non-Cryst. Solids 222, 228–234 (1997).

C. McIntosh, J. Toulouse, and P. Tick, “The Boson peak in alkali silicate glasses,” J. Non-Cryst. Solids 222, 335–341 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Solid State Chem. (2)

A. Berthereau, E. Fargin, A. Villesuzanne, R. Olazcuaga, G. Le Flem, and A. Ducasse, “Determination of local geometries around tellurium in TeO2—Nb2O5 and TeO2—Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,” J. Solid State Chem. 126, 143–151 (1996).
[CrossRef]

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, and G. Le Flem, “Glass structure and optical nonlinearities in thallium (I) Tellurium (IV) oxide glasses,” J. Solid State Chem. 146, 329–335 (1999).
[CrossRef]

Opt. Commun. (1)

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119, 479–484 (1995).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (Amsterdam, Neth.) (1)

R. Adair, L. L. Chase, and S. A. Payne, “Dispersion of the nonlinear refractive index of optical crystals,” Opt. Mater. (Amsterdam, Neth.) 1, 185–194 (1992).

Phys. Rev. A (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (3)

M. E. Lines, “Bond-orbital theory of linear and nonlinear electronic response in ionic crystals. II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
[CrossRef]

R. W. Hellwarth, J. Cherlow, and T. T. Tang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
[CrossRef]

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[CrossRef] [PubMed]

Other (4)

S. Montant, “Second and third order nonlinear studies in glasses,” Ph.D. thesis (University of Bordeaux, Bordeaux, France, 1999).

R. W. Hellwarth, Third-Order Susceptibilities of Liquids and Solids, Part I of Vol. 5 of Monographs: Progress in Quantum Electronics, J. H. Sanders and S. Stenholm, eds. (Pergamon, New York, 1977).

A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

L. Canioni, “Liquids and glasses nonlinearities properties analyzed by femtosecond interferometry,” Ph.D. thesis (University of Bordeaux, Bordeaux, France, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for measurements of the third-order nonlinear susceptibility at 800 nm. HWP, half-wave plate; Pol, polarizer; PhD-Si, silicon photodiode detector; PhD-GaAsP, gallium arsenic phosphor photodiode detector used as a two-photon photodiode; Glan, Glan polarizer.

Fig. 2
Fig. 2

Theoretical signal with a 1-mm sample of CS2. This signal is calculated at 800 nm for a 100-fs-width laser pulse. There are three contributions to the signal: the electronic one (solid thin curve), the nuclear orientation one (long-dashed curve), and the fast nuclear one (short-dashed curve). The solid curve is the full envelope signal. The curves have been computed with the tensor element definitions studied by Owyoung10: d1122(t)=-A exp(-t/τr), d1221(t)=d1212(t)=(3A/2)exp(-t/τr), and d1111(t)=2A exp(-t/τr), where A is the amplitude of the nuclear phenomena and τr is the response time of this process.

Fig. 3
Fig. 3

Zoom of the nonlinear fringes around the zero delay for the CS2 signal. There are three contributions to the signal: the electronic one (solid thin curve), the nuclear orientation one (long-dashed curve), and the fast nuclear one (short-dashed curve). These phase shifts of the nonlinear fringes have been computed for intelligibility but are not experimentally detectable.

Fig. 4
Fig. 4

Experimental signal obtained from a sample of silicon at 1.5 µm. This signal was acquired at low-speed delay.

Fig. 5
Fig. 5

Fourier transform of the signal obtained on the silicon sample (Fig. 4).

Fig. 6
Fig. 6

Density of fused-silica samples as a function of the nonlinear index of refraction. The solid curve is a fit.

Fig. 7
Fig. 7

Measured values of the nonlinear refractive-index coefficient as a function of wavelength. Coefficients are plotted in multiples of 1×10-20 m2/W. The source of the data is indicated in Ref. 18. The solid curve is a fit of the data by the PERT equation, and the dashed curve is a fit of the Kramers–Kronig model.

Fig. 8
Fig. 8

Polarized and depolarized low-frequency Raman spectra of a sample of fused silica (Suprasil), excited at 514.5 nm.

Fig. 9
Fig. 9

Nuclear response functions d1122(t) (thin curve) and d1212(t) (thick curve) of fused-silica glass, calculated from the Raman spectra shown in Fig. 5.

Fig. 10
Fig. 10

Calculated evolution of the nuclear contributions arising from the response d1212(t) of the nonlinear signal in arbitrary units as a function of the temporal width.

Fig. 11
Fig. 11

Pure theoretical signal of a 1-mm sample of fused silica at 800 nm with a 100-fs-width laser pulse. Nuclear contribution to the signal represents 1.5%.

Fig. 12
Fig. 12

Measurement of the real part of the third-order optical susceptibility of glasses as a function of the concentration in niobium at 800 nm.

Tables (2)

Tables Icon

Table 1 Synthesis of Error Studies in this Papera

Tables Icon

Table 2 Absolute Measurements of the Nonlinear Index of Refraction of Several Samples of Fused Silicaa

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

PNL(3)(r, t)=ε0-+-+-+R(3)¯¯(t1, t2, t3)×E(r, t-t3)E(r, t-t3-t2)×E(r, t-t3-t2-t1)dt1dt2dt3,
PNL(3)(r, t)=0χ(3)¯¯E(r, t)E(r, t)E(r, t)+0E(r, t)0+d(3)¯¯(t-t1)×E(r, t1)E(r, t1)dt1.
P1(3)(r, z, t)=30χ1212(3)E1(r, z, t)E22(r, z, t)+0E1(r, z, t)0+d1122(3)(t-t1)×E22(r, z, t1)dt1+20E2(r, z, t)0+d1212(3)(t-t1)×E1(r, z, t1)E2(r, z, t1)dt1.
ΔAs(r, z, t)-2ik(ω0)As(r, z, t)z=σ1As(r, z)|Ap(r, z)|2+σ2As(r, z)¯Ap2(r, z),
σ1=-3k022χ1212(3)s(t)s2(t-u)-k022s(t)×0+d1122(3)(t-t1)s2(t-t1)dt1-k024s(t-u)×0+d1212(3)(t-t1)s(t-t1)s(t-t1-u)dt1,
σ2=-k024 exp(-i2ω0u)3χ1212(3)s(t)s2(t-u)+s(t-u)0+d1212(3)(t-t1)s(t-t1)×s(t-t1-u)dt1,
A0(r, z)=A0w(z) exp-r2w2(z)×exp-ik(ω0)r22R(z)exp[iθ(z)].
As=A0+σ1A1+σ¯1A2+σ2A3+σ¯2A4.
As=A0+(σ1+σ2)A1.
ΔA1(r, z, t)-2ik(ω0)A1(r, z, t)z=Ap(r, z, t)Ap(r, z, t)¯A0(r, z, t).
IsIs01-k0242PmTc0F(w0, k0, L)Y(u),
Y(u)=G(u)[2β+α2+β2 sin(2ω0u-ϕ)]+[H2(R(d1212(3)), u)+H2(I(d1212(3)), u)]1/2×sin(2ω0u-ψ)-H(I(d1212(3)), u)-H(I(d1122(3)), u),
G(u)=-+s(t)s(t-u)dt-+s(t)dt2
H(f, u)=-+s(t)s(t-u)0+f(t-t1)s(t-t1)s(t-t1-u)dt1dt-+s(t)dt2
k=-μμakδ(f-k),ak=a-k,μ=4,a1=-0.934516,a3=-0.179644a0=1,a2=0.597986,a4=0.015458.
n2(m2/W)=3χ1111(3)(m2/V2)2c0n02,
n2(m2/W)=80πn0cn2(esu).
IsIs01-k0242PmTc0F(w0, k0, L)Y(u),
Y(u)=[αG(u)+H(R(d1212(3)), u)]sin(2ω0u).
IsIs01-k0242PmTc0F(w0, k0, L)ΛG(u)sin(2ω0u).
n2(esu)=K Epn0Eg4G2(ω/Eg),
G2(x)=12x6-38x2(1-x)-1/2+3x(1-x)1/2-2(1-x)3/2+2θ(1-2x)(1-2x)3/2,
n2(x)n2(0)=n(0)n(x)n(x)2+2n(0)2+24 11-x21-x21-4x2+12K×1-x21-4x2-1+x2/31-x2

Metrics