Abstract

We report the first demonstration to our knowledge of broadly tunable, single-frequency operation of a cw Cr:YAG laser. Single-frequency operation was obtained from 1332 to 1554 nm with a maximum output power of 680 mW generated at 1457 nm with 10% conversion efficiency of 1047-nm pump laser radiation. A traveling-wave ring resonator was forced to operate unidirectionally by use of Faraday rotation in the Cr:YAG gain medium with a nonplanar resonator alignment, providing the required compensating polarization rotation. Tuning was accomplished with a single-plate birefringent tuning element, and single-longitudinal-mode operation was obtained by the addition of a 9.5-mm-thick uncoated CaF2 etalon. An instrument-limited single-frequency linewidth of 2.3 MHz was measured.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
    [CrossRef]
  2. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
    [CrossRef]
  3. D. Welford and M. A. Jaspan, “Single-frequency operation of a Cr:YAG laser from 1332 nm to 1554 nm,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 435–436.
  4. T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
    [CrossRef]
  5. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  6. MPS-1047 laser manufactured by Q-Peak, Inc., 135 South Road, Bedford, Mass. 01730.
  7. H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
    [CrossRef]
  8. A. Sennaroglu, “Determination of the stimulated-emission cross section in an end-pumped solid-state laser from laser-induced pump saturation data,” Opt. Lett. 26, 500–502 (2001).
    [CrossRef]
  9. S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
    [CrossRef]
  10. E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. 36, 287–290 (1982).
    [CrossRef]
  11. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  12. S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
    [CrossRef]
  13. Y. Isyanova and P. F. Moulton, “Injection-seeded, pump enhanced, tunable KTA OPO,” in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

2003 (1)

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

2001 (1)

1995 (1)

1993 (1)

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

1985 (2)

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

1982 (1)

E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. 36, 287–290 (1982).
[CrossRef]

1980 (1)

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

1972 (1)

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Byer, R. L.

Dennis, W.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Dienes, A.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Eilers, H.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Huber, G.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Isyanova, E. D.

E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. 36, 287–290 (1982).
[CrossRef]

Jia, W.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Johnston, T. F.

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

Kalashnikov, V. L.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

Kane, T. J.

Killinger, D. K.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Kuck, S.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Levit, A. L.

E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. 36, 287–290 (1982).
[CrossRef]

Lovold, S.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Menyuk, N.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Moulton, P. F.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Nathel, H.

Naumov, S.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

Ovchinnikov, V. M.

E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. 36, 287–290 (1982).
[CrossRef]

Peterman, K.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Pollock, C. R.

Proffitt, W.

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Sennaroglu, A.

Shank, C. V.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Sorokin, E.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

Sorokina, I. T.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

Tempea, G.

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Yen, W. M.

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, “Self-starting five optical cycle pulse generation in Cr4+:YAG laser,” Appl. Phys. B: Lasers Opt. 76, 1–11 (2003).
[CrossRef]

IEEE J. Quantum Electron. (4)

H. Eilers, W. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

J. Appl. Spectrosc. (1)

E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. 36, 287–290 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Other (3)

D. Welford and M. A. Jaspan, “Single-frequency operation of a Cr:YAG laser from 1332 nm to 1554 nm,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 435–436.

Y. Isyanova and P. F. Moulton, “Injection-seeded, pump enhanced, tunable KTA OPO,” in Advanced Solid-State Lasers, Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).

MPS-1047 laser manufactured by Q-Peak, Inc., 135 South Road, Bedford, Mass. 01730.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Single-frequency Cr:YAG laser resonator.

Fig. 2
Fig. 2

Untuned Cr:YAG laser output data.

Fig. 3
Fig. 3

Cr:YAG laser tuning data obtained with a single-plate birefringent filter. The percentage values next to each curve are the corresponding output coupler transmissions.

Fig. 4
Fig. 4

Water-vapor absorption spectrum for a 1-m-long optical path at a 296 K partial pressure of 6 Torr.

Fig. 5
Fig. 5

Single-frequency Cr:YAG tuning curves with a fused-silica etalon in the laser resonator. The percentage values next to each curve are the corresponding output coupler transmissions.

Fig. 6
Fig. 6

Transmission of the 8-mm-thick uncoated fused-silica etalon.

Fig. 7
Fig. 7

Single-frequency Cr:YAG tuning curves with a CaF2 etalon in the laser resonator and an output coupler transmission of 0.5%.

Fig. 8
Fig. 8

Scanning Fabry–Perot interferometer output showing single-frequency operation of the Cr:YAG laser. The lower trace is a scan over approximately two free spectral ranges and shows two transmission peaks separated by 2 GHz. The upper trace is a 100 times expansion of the single laser longitudinal mode with an instrument-limited FWHM of 2.3 MHz.

Fig. 9
Fig. 9

Extended wavelength single-frequency Cr:YAG tuning curve with a CaF2 etalon in the laser resonator and an output coupler transmission of 0.1%.

Metrics