Abstract

We report on the optical properties of Nd3+- and Tb3+-doped low-phonon-energy moisture-resistant host crystals, potassium lead bromide (KPb2Br5), and rubidium lead bromide (RbPb2Br5), including absorption, emission, and emission lifetime measurements as well as calculations of the multiphonon decay rate, Judd–Ofelt parameters, and radiative transition probabilities for relevant (laser) transitions in these crystals. The RE3+:MPb2Br5 (M=Rb, K) crystal is a promising candidate for long-wavelength infrared applications because of the low phonon frequencies and other favorable features.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
    [CrossRef]
  2. R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
    [CrossRef]
  3. M. C. Nostrand, R. H. Page, S. A. Payne, and W. F. Krupke, “Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5:Dy3+,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 524–528.
  4. L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
    [CrossRef]
  5. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
    [CrossRef]
  6. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).
  7. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Laser demonstrations of rare-earth ions in low-phonon chloride and sulfide crystals,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 459–463.
  8. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5:Dy3+ laser action at 2.43 μm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 441–449.
  9. S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and J. Ganem, “New mid-IR laser based on an erbium activated low phonon energy crystal,” in Conference on Lasers and Electro-Optics, Vol. 56 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 557–558.
  10. R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
    [CrossRef]
  11. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
    [CrossRef]
  12. R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
    [CrossRef]
  13. N. W. Jenkins and S. R. Bowman, “Lifetime measurements for a potential neodymium 5-μm laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 280–281.
  14. N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
    [CrossRef]
  15. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
    [CrossRef]
  16. L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
    [CrossRef]
  17. N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
    [CrossRef]
  18. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
    [CrossRef]
  19. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
    [CrossRef]
  20. P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
    [CrossRef]
  21. R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
    [CrossRef]
  22. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zavgorodnev, “Sensitization of MIR Tb3+ luminescence by Tm3+ ions in CsCdBr3 and KPb2Cl5 crystals,” in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 303–308.
  23. M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).
  24. K. Nitsch and M. Rodova, “Differential thermal analysis study of lead bromide,” J. Cryst. Growth 134, 386–387 (1993).
    [CrossRef]
  25. H. M. Powell and H. S. Tasker, “The valency angle of bivalent lead: the crystal structure of ammonium, rubidium, and potassium pentabromodiplumbites,” J. Chem. Soc. 1937119–123 ().
  26. K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
    [CrossRef]
  27. K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).
  28. M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
    [CrossRef]
  29. Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
    [CrossRef]
  30. M. J. Weber, CRC Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, London, 1986).
  31. M. C. Nostrand, “New mid-IR lasers based on rare-earth-doped sulfide and chloride materials,” Ph.D. dissertation (Lawrence Livermore National Laboratory, Livermore, Calif., 2000).
  32. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 14.1–14.65.
  33. R. Pohlman, “Ultrarotspektren von Ammoniumsalzen im Gebiet ihrer anomalen spezifischen Waerme,” Z. Phys. 79, 394–420 (1932).
    [CrossRef]
  34. O. Reinkober, “Ultrarote Absorptionsspektren fester Substanzen in duennen Schichten,” Z. Phys. 5, 192–197 (1921).
    [CrossRef]
  35. R. C. Weast and M. J. Astle, eds., CRC Handbook of Chemistry and Physics, 63rd ed. (CRC Press, Boca Raton, Fla., 1982).
  36. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  37. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  38. M. C. Nostrand, Lawrence Livermore National Laboratory, University of California, Livermore, Calif. 94550 (personal communication, 2003).
  39. W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
    [CrossRef]
  40. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, New York, 1996).
  41. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
    [CrossRef]
  42. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
    [CrossRef]
  43. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3” (Chemistry Division, Argonne National Laboratory, Argonne, Ill., 1977).
  44. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
    [CrossRef]
  45. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]
  46. G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
    [CrossRef]

2003

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

2002

R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

2001

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
[CrossRef]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

2000

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

1999

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

1998

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

1997

R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
[CrossRef]

1996

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
[CrossRef]

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

1995

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

1993

K. Nitsch and M. Rodova, “Differential thermal analysis study of lead bromide,” J. Cryst. Growth 134, 386–387 (1993).
[CrossRef]

1991

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

1988

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

1982

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

1977

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

1971

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
[CrossRef]

M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).

1966

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

1932

R. Pohlman, “Ultrarotspektren von Ammoniumsalzen im Gebiet ihrer anomalen spezifischen Waerme,” Z. Phys. 79, 394–420 (1932).
[CrossRef]

1921

O. Reinkober, “Ultrarote Absorptionsspektren fester Substanzen in duennen Schichten,” Z. Phys. 5, 192–197 (1921).
[CrossRef]

Aggarwal, I. D.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

Al-Saleh, M.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
[CrossRef]

An, X. S.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

Balda, R.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
[CrossRef]

Bowman, S. R.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
[CrossRef]

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
[CrossRef]

Butvina, L. N.

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

Cola, M.

M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

Dianov, E. M.

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

Doualan, J. L.

P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
[CrossRef]

Duczynski, E. W.

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

Dušek, M.

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

Fabian, T.

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Feldman, B. J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
[CrossRef]

Fernandez, J.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
[CrossRef]

Ferrand, B.

P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
[CrossRef]

Ganem, J.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
[CrossRef]

Guyot, Y.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

Hamplová, V.

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

Huber, G.

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

Hybler, J.

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Isaenko, L. I.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

Ivanova, S. E.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

Jenkins, N. W.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

Joubert, M.-F.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Krupke, W. F.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
[CrossRef]

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
[CrossRef]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
[CrossRef]

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Lichkova, N. V.

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

Lindle, J. R.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
[CrossRef]

Liu, L. Q.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Massarotti, V.

M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).

Mendioroz, A.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

Mironov, D. I.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

Moncorge, R.

P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
[CrossRef]

Nadolinny, V. A.

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

Nikl, M.

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Nitsch, K.

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

K. Nitsch and M. Rodova, “Differential thermal analysis study of lead bromide,” J. Cryst. Growth 134, 386–387 (1993).
[CrossRef]

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Nostrand, M. C.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

O’Connor, S.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Okhrimchuk, A. G.

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

Page, R. H.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
[CrossRef]

Pashkov, V. I.

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

Payne, S. A.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
[CrossRef]

Petermann, K.

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

Pohlman, R.

R. Pohlman, “Ultrarotspektren von Ammoniumsalzen im Gebiet ihrer anomalen spezifischen Waerme,” Z. Phys. 79, 394–420 (1932).
[CrossRef]

Polák, K.

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Powell, H. M.

H. M. Powell and H. S. Tasker, “The valency angle of bivalent lead: the crystal structure of ammonium, rubidium, and potassium pentabromodiplumbites,” J. Chem. Soc. 1937119–123 ().

Reinkober, O.

O. Reinkober, “Ultrarote Absorptionsspektren fester Substanzen in duennen Schichten,” Z. Phys. 5, 192–197 (1921).
[CrossRef]

Ren, Q.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Riccardi, R.

M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).

Rodova, M.

K. Nitsch and M. Rodova, “Differential thermal analysis study of lead bromide,” J. Cryst. Growth 134, 386–387 (1993).
[CrossRef]

Rodová, M.

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

Sanghera, J. S.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

Schaffers, K. I.

R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
[CrossRef]

Searles, S. K.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

Shaw, L. B.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
[CrossRef]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
[CrossRef]

Sinistri, C.

M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).

Solarz, R.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

Tasker, H. S.

H. M. Powell and H. S. Tasker, “The valency angle of bivalent lead: the crystal structure of ammonium, rubidium, and potassium pentabromodiplumbites,” J. Chem. Soc. 1937119–123 ().

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

Tigreat, P. Y.

P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
[CrossRef]

Tkachuk, A. M.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

Velicka, I.

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Voda, M.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
[CrossRef]

Wang, Z. G.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Xu, D.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Yelisseyev, A. P.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, W. F. Krupke, S. A. Payne, R. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped KPb2Cl5 crystal of double chlorides and double fluorides as the active media of IR solid state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

Zavgorodnev, V. N.

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

Zhang, G. H.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Acta Phys. Pol. A

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, R. Solarz, M. C. Nostrand, R. H. Page, and S. A. Payne, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).

Chem. Phys. Lett.

K. Nitsch, V. Hamplová, M. Nikl, K. Polák, and M. Rodová, “Lead bromide and ternary alkali lead bromide single crystals—growth and emission properties,” Chem. Phys. Lett. 258, 518–522 (1996).
[CrossRef]

IEEE J. Quantum Electron.

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare earth-doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 48, 1127–1136 (2001).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron. 24, 920–923 (1988).
[CrossRef]

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Chem. Soc.

H. M. Powell and H. S. Tasker, “The valency angle of bivalent lead: the crystal structure of ammonium, rubidium, and potassium pentabromodiplumbites,” J. Chem. Soc. 1937119–123 ().

J. Cryst. Growth

K. Nitsch and M. Rodova, “Differential thermal analysis study of lead bromide,” J. Cryst. Growth 134, 386–387 (1993).
[CrossRef]

J. Lightwave Technol.

R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
[CrossRef]

J. Lumin.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127–134 (2002).
[CrossRef]

P. Y. Tigreat, J. L. Doualan, R. Moncorge, and B. Ferrand, “Spectroscopic investigation of a 1.55 μm emission band in Dy3+-doped CsCdBr3 and KPb2Cl5 single crystal,” J. Lumin. 94–95, 107–111 (2001).
[CrossRef]

R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, “Visible luminescence in KPb2Cl5:Pr3+ crystal,” J. Lumin. 97, 190–197 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Technol.

Mater. Res. Bull.

Q. Ren, L. Q. Liu, Z. G. Wang, X. S. An, G. H. Zhang, and D. Xu, “Refractive index and absorption of lead bromide crystals,” Mater. Res. Bull. 35, 471–476 (2000).
[CrossRef]

Opt. Mater.

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion in Pr3+-doped KPb2Cl5 crystal,” Opt. Mater. 24, 91–95 (2003).
[CrossRef]

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, “Spectroscopic characterization of Erdoped KPb2Cl5 laser crystals,” Opt. Mater. 22, 311–320 (2003).
[CrossRef]

Opt. Spectrosc.

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. A. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+. 1. Optical spectra and relaxation of the erbium excited states in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722–740 (2003).
[CrossRef]

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. A. Payne, R. Solarz, R. H. Page, and M. C. Nostrand, “Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals,” Opt. Spectrosc. 92, 83–94 (2002).
[CrossRef]

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325–337 (1966).
[CrossRef]

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

R. Balda, J. Fernandez, A. Mendioroz, M. Voda, and M. Al-Saleh, “Infrared to visible upconversion processes in Pr3+/Yb3+-codoped potassium lead chloride crystal,” Phys. Rev. B 68, 165101–1–165101–7 (2003).
[CrossRef]

Phys. Status Solidi B

M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polák, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
[CrossRef]

Proc. SPIE

A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, D. I. Mironov, M. C. Nostrand, R. H. Page, and S. A. Payne, “Spectroscopic properties of TR3+-doped double chloride crystals,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 22–36 (2002).
[CrossRef]

L. N. Butvina, E. M. Dianov, A. G. Okhrimchuk, N. V. Lichkova, and V. N. Zavgorodnev, “MIR spectroscopy of Tb3+-doped low-phonon crystals and polycrystalline fibers,” in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, A. A. Kaplyanskii, B. Z. Malkin, and S. I. Nikitin, eds., Proc. SPIE 4766, 37–42 (2002).
[CrossRef]

L. I. Isaenko, A. P. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, R. H. Page, S. A. Payne, and R. Solarz, “Spectroscopic investigation of rare earth doped chloride single crystals for telecommunication amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
[CrossRef]

Prog. Cryst. Growth Charact.

K. Nitsch, M. Dušek, M. Nikl, K. Polák, and M. Rodová, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).

Z. Naturforsch. Teil. A

M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, “Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl)Br: a DTA and diffractometric study,” Z. Naturforsch. Teil. A 26, 1328–1332 (1971).

Z. Phys.

R. Pohlman, “Ultrarotspektren von Ammoniumsalzen im Gebiet ihrer anomalen spezifischen Waerme,” Z. Phys. 79, 394–420 (1932).
[CrossRef]

O. Reinkober, “Ultrarote Absorptionsspektren fester Substanzen in duennen Schichten,” Z. Phys. 5, 192–197 (1921).
[CrossRef]

Other

R. C. Weast and M. J. Astle, eds., CRC Handbook of Chemistry and Physics, 63rd ed. (CRC Press, Boca Raton, Fla., 1982).

M. C. Nostrand, Lawrence Livermore National Laboratory, University of California, Livermore, Calif. 94550 (personal communication, 2003).

M. J. Weber, CRC Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, London, 1986).

M. C. Nostrand, “New mid-IR lasers based on rare-earth-doped sulfide and chloride materials,” Ph.D. dissertation (Lawrence Livermore National Laboratory, Livermore, Calif., 2000).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 14.1–14.65.

A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zavgorodnev, “Sensitization of MIR Tb3+ luminescence by Tm3+ ions in CsCdBr3 and KPb2Cl5 crystals,” in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 303–308.

N. W. Jenkins and S. R. Bowman, “Lifetime measurements for a potential neodymium 5-μm laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 280–281.

M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Laser demonstrations of rare-earth ions in low-phonon chloride and sulfide crystals,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 459–463.

M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5:Dy3+ laser action at 2.43 μm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 441–449.

S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and J. Ganem, “New mid-IR laser based on an erbium activated low phonon energy crystal,” in Conference on Lasers and Electro-Optics, Vol. 56 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 557–558.

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3” (Chemistry Division, Argonne National Laboratory, Argonne, Ill., 1977).

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, New York, 1996).

M. C. Nostrand, R. H. Page, S. A. Payne, and W. F. Krupke, “Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5:Dy3+,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 524–528.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Undoped KPB crystal grown by the Bridgman technique.

Fig. 2
Fig. 2

Raman-scattering spectra. The maximum phonon energies (highest energy peak values) in the MPB crystals (M=K, Rb) of 138 and 141 cm-1 are even lower than those of the MPC crystals (203 cm-1).

Fig. 3
Fig. 3

Absorption spectrum of KPb2Br5:Nd3+. The IR cutoff in the long-wavelength region gives a phonon energy of 130–140 cm-1. The relatively sharp feature near 1400 cm-1 is due to the presence of NH4+ ions, and the broader feature near 3200 cm-1 is due to OH- ions and/or NH4+ ions.

Fig. 4
Fig. 4

Absorption spectra of (a) Nd3+-doped KPB and (b) Nd3+-doped RPB show peaks assigned to transitions of the Nd3+ ion. Host crystal absorptions at the shorter wavelength were subtracted. The polarized absorption spectrum inset in (b) shows the importance of the crystal orientation for the pumping of the  4F levels in future laser experiments.

Fig. 5
Fig. 5

Energy-level diagram of Nd:MPB (M=K, Rb) displays the possibility of new laser transitions from the  4F5/2 level, in addition to conventional laser transitions from the  4F3/2 level. Possible excited-state absorptions at the new laser wavelengths of 1.19 and 0.97 µm are also indicated.

Fig. 6
Fig. 6

Blackbody-corrected room-temperature unpolarized emission spectra obtained by excitation of the  4F7/2 level of Nd3+-doped MPB (M=Rb,K) crystals. Compared with the KPC:Nd3+, 19 the more intense fluorescence from the  4F5/2 level (=4F5/2+ 2H9/2 level) due to the low multiphonon decay rate is encouraging for the possible achievement of laser activity at new wavelengths.

Fig. 7
Fig. 7

Fluorescence decay measurements from the combined  4F5/2+ 2H9/2 level and the  4F3/2 level of MPB:Nd3+ (M=Rb, K) by direct excitation of the levels yields an exponential decay lifetime of ∼0.12 ms (4F5/2+ 2H9/2).

Fig. 8
Fig. 8

Unpolarized absorption spectrum of KPB:Tb3+.

Fig. 9
Fig. 9

Energy-level diagram of Tb:KPB displays the possibility of direct pumping of long-wavelength transitions.

Fig. 10
Fig. 10

Room-temperature LWIR emission spectra resulting from the  7F5 and  7F4 level in Tb3+-doped KPB crystals.

Fig. 11
Fig. 11

Long lifetimes of the  7F5 and  7F4 levels were measured for different samples of KPB:Tb3+, which is encouraging for proving laser activity in these crystals in the LWIR region.

Fig. 12
Fig. 12

Multiphonon decay rate versus energy gap between two levels for different host lattices determined by the energy-gap law [Eq. (6)]. The measured value of the nonradiative rate in rare-earth-doped KPB is calculated by subtraction of the radiative rate 1/τrad from the measured rate 1/τmeas. The values are indicated with triangles.

Tables (7)

Tables Icon

Table 1 Refractive Indices n of MPB (M=K, Rb)

Tables Icon

Table 2a Calculated Line Strengths S of Induced Electric Dipole (ED) and of Magnetic Dipole (MD) Transitions, Spontaneous Emission Rates AED and AMD, Radiative Branching Ratios βrad,calc, and Radiative Lifetimes τrad for Relevant (Laser) Transitions in a Nd:KPB Crystala

Tables Icon

Table 2b Calculated Line Strengths S of Induced Electric Dipole (ED) and of Magnetic Dipole (MD) Transitions, Spontaneous Emission Rates AED and AMD, Radiative Branching Ratios βrad,calc, and Radiative Lifetimes τrad for Relevant (Laser) Transitions in a Nd:RPB Crystala

Tables Icon

Table 3 Radiative Branching Ratios for the  4F5/2+ 2H9/2 Level and the  4F3/2 Level in Nd3+-doped MPB (M=Rb, K) crystalsa

Tables Icon

Table 4 Measured Decay Times τmeas and Calculated Radiative Lifetimes τrad of the  4F5/2+ 2H9/2 Level and the  4F3/2 Level of MPB:Nd3+ (M=K,Rb)a

Tables Icon

Table 5 Calculated Line Strengths S of Induced Electric Dipole (ED) Transitions and of Magnetic Dipole (MD) Transitions, Spontaneous Emission Rates AED and AMD, Radiative Branching Ratios βrad,calc, and Radiative Lifetimes τrad for Relevant (Laser) Transitions in a Tb:KPB Crystala

Tables Icon

Table 6 Decay Times of the  7F4 and  7F5 Levels of KPB:Tb3+ for Six Different Samples Used in Our Study of Different Tb3+ Concentrations

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Ω2=15.7×10-20 cm2,
Ω4=6.3×10-20 cm2,
Ω6=3.0×10-20 cm2.
Ω2=0.41×10-20 cm2,
Ω4=9.3×10-20 cm2,
Ω6=2.6×10-20 cm2.
σJJem(λ)=λ5βJJrad,measI(λ)8πcn2τJradJJI(λ)λdλ,
βJJrad,meas=JJI(λ)λdλJJJI(λ)λdλ.
η 4F5/2=1ϕ 4F3/2/ϕ 4F5/2+1,
ϕJ=JJJ I(λ)hc/λ dλ.
ηeffrad=τmeasτrad.
Ω2=3.7×10-20 cm2(±20%),
Ω4=4.3×10-20 cm2(±40%),
Ω6=0.72×10-20 cm2(±10%).
WMP=C exp(-χΔE)[1-exp(-hνeff/kT)]-p,
χKPBhνeff,KPChνeff,KPBχKPC=203cm-1138cm-11.2×10-2 cm.

Metrics