L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004).

[CrossRef]

Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in an optical fiber with higher-order effects,” Phys. Rev. E 67, 026603 (2003).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

A. Mahalingam and K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers,” Phys. Rev. E 64, 046608 (2001).

[CrossRef]

W. P. Hong, “Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms,” Opt. Commun. 194, 217–223 (2001).

[CrossRef]

Z. H. Li, L. Li, H. P. Tian, and G. S. Zhou, “New types of solitary wave solution for the higher nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

[CrossRef]
[PubMed]

S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third-order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).

[CrossRef]

Q. H. Park and H. J. Shin, “Parametric control of soliton light traffic by cw traffic light,” Phys. Rev. Lett. 82, 4432–4435 (1999).

[CrossRef]

Z. H. Li, G. S. Zhou, and D. C. Su, “N-soliton solution in the higher order nonlinear Schrödinger equation,” in Fiber Optic Components and Optical Communication II, S. Jian, F. F. Tong, and R. Maerz, eds., Proc. SPIE 3552, 226–231 (1998).

[CrossRef]

M. Gedalin, T. C. Scott, and Y. B. Band, “Optical solitary waves in the higher-order nonlinear Schrödinger equation,” Phys. Rev. Lett. 78, 448–451 (1997).

[CrossRef]

D. Mihalache, N. Truta, and L. C. Crasovan, “Painleve analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term,” Phys. Rev. E 56, 1064–1070 (1997).

[CrossRef]

K. Porsezian and K. Nakkeeran, “Optical solitons in presence of Kerr dispersion and self-frequency shift,” Phys. Rev. Lett. 76, 3955–3958 (1996).

[CrossRef]
[PubMed]

R. Radhakrishnam and M. Lakshmanan, “Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects,” Phys. Rev. E 54, 2949–2955 (1996).

[CrossRef]

D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers,” J. Phys. A: Math. Gen. 27, 6177–6189 (1994).

[CrossRef]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

D. Mihalache and N. C. Panoiu, “Analytic method for solving the nonlinear Schrödinger equation describing pulse propagation in dispersive optic fibres,” J. Phys. A: Math. Gen. 26, 2679–2697 (1993).

[CrossRef]

D. Mihalache, F. Lederer, and D.-M. Baboiu, “Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical soliton propagation,” Phys. Rev. A 47, 3285–3290 (1993).

[CrossRef]
[PubMed]

L. Gagnon, “Solitons on a continuous-wave background and collision between two dark pulses: some analytical results,” J. Opt. Soc. Am. B 10, 469–474 (1993).

[CrossRef]

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1991).

[CrossRef]

N. Sasa and J. Satsuma, “New-type soliton solution for a higher-order nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 60, 409–417 (1991).

[CrossRef]

Y. S. Kivshar and V. V. Afanasjev, “Dark optical solitons with reverse-sign amplitude,” Phys. Rev. A 44, R1446–R1449 (1991).

[CrossRef]
[PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).

[CrossRef]

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).

[CrossRef]
[PubMed]

R. Hirota, “Exact envelope-soliton solution of a nonlinear wave equation,” J. Math. Phys. 14, 805–809 (1973).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. 1. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

Y. S. Kivshar and V. V. Afanasjev, “Dark optical solitons with reverse-sign amplitude,” Phys. Rev. A 44, R1446–R1449 (1991).

[CrossRef]
[PubMed]

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).

[CrossRef]
[PubMed]

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1991).

[CrossRef]

D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers,” J. Phys. A: Math. Gen. 27, 6177–6189 (1994).

[CrossRef]

D. Mihalache, F. Lederer, and D.-M. Baboiu, “Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical soliton propagation,” Phys. Rev. A 47, 3285–3290 (1993).

[CrossRef]
[PubMed]

M. Gedalin, T. C. Scott, and Y. B. Band, “Optical solitary waves in the higher-order nonlinear Schrödinger equation,” Phys. Rev. Lett. 78, 448–451 (1997).

[CrossRef]

D. Mihalache, N. Truta, and L. C. Crasovan, “Painleve analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term,” Phys. Rev. E 56, 1064–1070 (1997).

[CrossRef]

S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third-order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).

[CrossRef]

S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third-order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).

[CrossRef]

M. Gedalin, T. C. Scott, and Y. B. Band, “Optical solitary waves in the higher-order nonlinear Schrödinger equation,” Phys. Rev. Lett. 78, 448–451 (1997).

[CrossRef]

S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third-order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).

[CrossRef]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. 1. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

R. Hirota, “Exact envelope-soliton solution of a nonlinear wave equation,” J. Math. Phys. 14, 805–809 (1973).

[CrossRef]

W. P. Hong, “Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms,” Opt. Commun. 194, 217–223 (2001).

[CrossRef]

Y. S. Kivshar and V. V. Afanasjev, “Dark optical solitons with reverse-sign amplitude,” Phys. Rev. A 44, R1446–R1449 (1991).

[CrossRef]
[PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).

[CrossRef]

R. Radhakrishnam and M. Lakshmanan, “Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects,” Phys. Rev. E 54, 2949–2955 (1996).

[CrossRef]

D. Mihalache, F. Lederer, and D.-M. Baboiu, “Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical soliton propagation,” Phys. Rev. A 47, 3285–3290 (1993).

[CrossRef]
[PubMed]

L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004).

[CrossRef]

Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in an optical fiber with higher-order effects,” Phys. Rev. E 67, 026603 (2003).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

Z. H. Li, L. Li, H. P. Tian, and G. S. Zhou, “New types of solitary wave solution for the higher nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

[CrossRef]
[PubMed]

L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004).

[CrossRef]

L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004).

[CrossRef]

Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in an optical fiber with higher-order effects,” Phys. Rev. E 67, 026603 (2003).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

Z. H. Li, L. Li, H. P. Tian, and G. S. Zhou, “New types of solitary wave solution for the higher nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

[CrossRef]
[PubMed]

Z. H. Li, G. S. Zhou, and D. C. Su, “N-soliton solution in the higher order nonlinear Schrödinger equation,” in Fiber Optic Components and Optical Communication II, S. Jian, F. F. Tong, and R. Maerz, eds., Proc. SPIE 3552, 226–231 (1998).

[CrossRef]

A. Mahalingam and K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers,” Phys. Rev. E 64, 046608 (2001).

[CrossRef]

D. Mihalache, N. Truta, and L. C. Crasovan, “Painleve analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term,” Phys. Rev. E 56, 1064–1070 (1997).

[CrossRef]

D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers,” J. Phys. A: Math. Gen. 27, 6177–6189 (1994).

[CrossRef]

D. Mihalache and N. C. Panoiu, “Analytic method for solving the nonlinear Schrödinger equation describing pulse propagation in dispersive optic fibres,” J. Phys. A: Math. Gen. 26, 2679–2697 (1993).

[CrossRef]

D. Mihalache, F. Lederer, and D.-M. Baboiu, “Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical soliton propagation,” Phys. Rev. A 47, 3285–3290 (1993).

[CrossRef]
[PubMed]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1991).

[CrossRef]

D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers,” J. Phys. A: Math. Gen. 27, 6177–6189 (1994).

[CrossRef]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

K. Porsezian and K. Nakkeeran, “Optical solitons in presence of Kerr dispersion and self-frequency shift,” Phys. Rev. Lett. 76, 3955–3958 (1996).

[CrossRef]
[PubMed]

S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third-order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).

[CrossRef]

D. Mihalache and N. C. Panoiu, “Analytic method for solving the nonlinear Schrödinger equation describing pulse propagation in dispersive optic fibres,” J. Phys. A: Math. Gen. 26, 2679–2697 (1993).

[CrossRef]

D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers,” J. Phys. A: Math. Gen. 27, 6177–6189 (1994).

[CrossRef]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

Q. H. Park and H. J. Shin, “Parametric control of soliton light traffic by cw traffic light,” Phys. Rev. Lett. 82, 4432–4435 (1999).

[CrossRef]

A. Mahalingam and K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers,” Phys. Rev. E 64, 046608 (2001).

[CrossRef]

K. Porsezian and K. Nakkeeran, “Optical solitons in presence of Kerr dispersion and self-frequency shift,” Phys. Rev. Lett. 76, 3955–3958 (1996).

[CrossRef]
[PubMed]

R. Radhakrishnam and M. Lakshmanan, “Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects,” Phys. Rev. E 54, 2949–2955 (1996).

[CrossRef]

N. Sasa and J. Satsuma, “New-type soliton solution for a higher-order nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 60, 409–417 (1991).

[CrossRef]

N. Sasa and J. Satsuma, “New-type soliton solution for a higher-order nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 60, 409–417 (1991).

[CrossRef]

M. Gedalin, T. C. Scott, and Y. B. Band, “Optical solitary waves in the higher-order nonlinear Schrödinger equation,” Phys. Rev. Lett. 78, 448–451 (1997).

[CrossRef]

Q. H. Park and H. J. Shin, “Parametric control of soliton light traffic by cw traffic light,” Phys. Rev. Lett. 82, 4432–4435 (1999).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

Z. H. Li, G. S. Zhou, and D. C. Su, “N-soliton solution in the higher order nonlinear Schrödinger equation,” in Fiber Optic Components and Optical Communication II, S. Jian, F. F. Tong, and R. Maerz, eds., Proc. SPIE 3552, 226–231 (1998).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. 1. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

Z. H. Li, L. Li, H. P. Tian, and G. S. Zhou, “New types of solitary wave solution for the higher nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

[CrossRef]
[PubMed]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

D. Mihalache, N. Truta, and L. C. Crasovan, “Painleve analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term,” Phys. Rev. E 56, 1064–1070 (1997).

[CrossRef]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in an optical fiber with higher-order effects,” Phys. Rev. E 67, 026603 (2003).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004).

[CrossRef]

Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in an optical fiber with higher-order effects,” Phys. Rev. E 67, 026603 (2003).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

Z. H. Li, L. Li, H. P. Tian, and G. S. Zhou, “New types of solitary wave solution for the higher nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

[CrossRef]
[PubMed]

Z. H. Li, G. S. Zhou, and D. C. Su, “N-soliton solution in the higher order nonlinear Schrödinger equation,” in Fiber Optic Components and Optical Communication II, S. Jian, F. F. Tong, and R. Maerz, eds., Proc. SPIE 3552, 226–231 (1998).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. 1. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).

[CrossRef]

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1991).

[CrossRef]

R. Hirota, “Exact envelope-soliton solution of a nonlinear wave equation,” J. Math. Phys. 14, 805–809 (1973).

[CrossRef]

D. Mihalache and N. C. Panoiu, “Analytic method for solving the nonlinear Schrödinger equation describing pulse propagation in dispersive optic fibres,” J. Phys. A: Math. Gen. 26, 2679–2697 (1993).

[CrossRef]

D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “The Riemann problem method for solving a perturbed nonlinear Schrödinger equation describing pulse propagation in optic fibers,” J. Phys. A: Math. Gen. 27, 6177–6189 (1994).

[CrossRef]

N. Sasa and J. Satsuma, “New-type soliton solution for a higher-order nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 60, 409–417 (1991).

[CrossRef]

W. P. Hong, “Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms,” Opt. Commun. 194, 217–223 (2001).

[CrossRef]

L. Li, Z. H. Li, S. Q. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in inhomogeneous optical fiber media,” Opt. Commun. 234, 169–176 (2004).

[CrossRef]

D. Mihalache, F. Lederer, and D.-M. Baboiu, “Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical soliton propagation,” Phys. Rev. A 47, 3285–3290 (1993).

[CrossRef]
[PubMed]

Y. S. Kivshar and V. V. Afanasjev, “Dark optical solitons with reverse-sign amplitude,” Phys. Rev. A 44, R1446–R1449 (1991).

[CrossRef]
[PubMed]

R. Radhakrishnam and M. Lakshmanan, “Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects,” Phys. Rev. E 54, 2949–2955 (1996).

[CrossRef]

S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third-order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).

[CrossRef]

A. Mahalingam and K. Porsezian, “Propagation of dark solitons with higher-order effects in optical fibers,” Phys. Rev. E 64, 046608 (2001).

[CrossRef]

L. Li, Z. H. Li, Z. Y. Xu, G. S. Zhou, and K. H. Spatscheck, “Gray optical dips in subpicosecond regime,” Phys. Rev. E 66, 046616 (2002).

[CrossRef]

Z. Y. Xu, L. Li, Z. H. Li, and G. S. Zhou, “Modulation instability and solitons on a cw background in an optical fiber with higher-order effects,” Phys. Rev. E 67, 026603 (2003).

[CrossRef]

D. Mihalache, N. Truta, and L. C. Crasovan, “Painleve analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term,” Phys. Rev. E 56, 1064–1070 (1997).

[CrossRef]

D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N. Truta, “Inverse scattering approach to femtosecond solitons in monomode optical fibers,” Phys. Rev. E 48, 4699–4709 (1993).

[CrossRef]

K. Porsezian and K. Nakkeeran, “Optical solitons in presence of Kerr dispersion and self-frequency shift,” Phys. Rev. Lett. 76, 3955–3958 (1996).

[CrossRef]
[PubMed]

M. Gedalin, T. C. Scott, and Y. B. Band, “Optical solitary waves in the higher-order nonlinear Schrödinger equation,” Phys. Rev. Lett. 78, 448–451 (1997).

[CrossRef]

Z. H. Li, L. Li, H. P. Tian, and G. S. Zhou, “New types of solitary wave solution for the higher nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

[CrossRef]
[PubMed]

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).

[CrossRef]
[PubMed]

Q. H. Park and H. J. Shin, “Parametric control of soliton light traffic by cw traffic light,” Phys. Rev. Lett. 82, 4432–4435 (1999).

[CrossRef]

Z. H. Li, G. S. Zhou, and D. C. Su, “N-soliton solution in the higher order nonlinear Schrödinger equation,” in Fiber Optic Components and Optical Communication II, S. Jian, F. F. Tong, and R. Maerz, eds., Proc. SPIE 3552, 226–231 (1998).

[CrossRef]

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, Oxford, UK, 1995).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995).

M. J. Ablowitz and P. A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University, London, 1991).

V. B. Matveev and M. A. Salli, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics (Springer-Verlag, Berlin, 1991).