Abstract

The fabrication of meter-long continuous internal fiber electrodes is achieved through deposition of a silver film inside a twin-hole fiber. Photolithography of the electrodes with 5-µm resolution inside the fiber is demonstrated by point-by-point side exposure to 0.53-µm radiation through the unharmed acrylate coating, causing laser ablation. A proof-of-principle experiment demonstrates the creation of a phase-matched structure for frequency doubling.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  2. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
    [CrossRef]
  3. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  4. Å. Claesson, S. Smuk, H. Arsalane, W. Margulis, T. Naterstad, E. Zimmer, and A. Malthe-Sørenssen, “Internal electrode fiber polarization controller,” in Optical Fiber Communication Conference, Vol. 86 of USA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MF35, p. 39.
  5. M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
    [CrossRef]
  6. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  7. X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8, 227–229 (1996).
    [CrossRef]
  8. P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
    [CrossRef]
  9. V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,” Opt. Lett. 24, 208–210 (1999).
    [CrossRef]
  10. C. D. Rabii, D. J. Gibson, and J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38, 4486–4493 (1999).
    [CrossRef]
  11. T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
    [CrossRef]
  12. W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature (London) 378, 699–701 (1995).
    [CrossRef]
  13. P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30, 1345–1347 (1994).
    [CrossRef]

2003 (1)

2002 (2)

M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

2001 (2)

T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

1999 (2)

1996 (1)

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8, 227–229 (1996).
[CrossRef]

1995 (2)

P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
[CrossRef]

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature (London) 378, 699–701 (1995).
[CrossRef]

1994 (1)

P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30, 1345–1347 (1994).
[CrossRef]

1991 (1)

Baldwin, K. W.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Berlemont, D.

Bian, B.

T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
[CrossRef]

Bjarklev, A.

Bonfrate, G.

Broderick, N. G.

Broeng, J.

Brueck, S. R. J.

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8, 227–229 (1996).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Claesson, Å.

de Sandro, J. P.

Dolinski, M.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Dong, L.

P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
[CrossRef]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30, 1345–1347 (1994).
[CrossRef]

Eggleton, B. J.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Fokine, M.

Gao, J.

T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
[CrossRef]

Gibson, D. J.

Hale, A.

Harrington, J. A.

Hermann, D. S.

Kazansky, P. G.

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,” Opt. Lett. 24, 208–210 (1999).
[CrossRef]

P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
[CrossRef]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30, 1345–1347 (1994).
[CrossRef]

Kerbage, C.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Kjellberg, L.

Krummenacher, L.

Larsen, T. T.

Laurell, F.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature (London) 378, 699–701 (1995).
[CrossRef]

Lesche, B.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature (London) 378, 699–701 (1995).
[CrossRef]

Levenson, J. A.

Long, X. C.

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8, 227–229 (1996).
[CrossRef]

Mach, P.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Margulis, W.

Mukherjee, N.

Myers, R. A.

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8, 227–229 (1996).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Nilsson, L. E.

Pannnell, C. N.

P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
[CrossRef]

Pruneri, V.

Rabii, C. D.

Richardson, D. J.

Rogers, J. A.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
[CrossRef]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30, 1345–1347 (1994).
[CrossRef]

Shen, J.

T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
[CrossRef]

Simonneau, C.

Vidakovic, P.

Wen, T.

T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Electron. Lett. (2)

P. G. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannnell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995).
[CrossRef]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30, 1345–1347 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

X. C. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8, 227–229 (1996).
[CrossRef]

Mater. Lett. (1)

T. Wen, J. Gao, B. Bian, and J. Shen, “Investigation on roughness of silver thin films inside silica capillaries for hollow waveguides,” Mater. Lett. 50, 124–128 (2001).
[CrossRef]

Nature (London) (1)

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature (London) 378, 699–701 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

Å. Claesson, S. Smuk, H. Arsalane, W. Margulis, T. Naterstad, E. Zimmer, and A. Malthe-Sørenssen, “Internal electrode fiber polarization controller,” in Optical Fiber Communication Conference, Vol. 86 of USA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MF35, p. 39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left, cross section of a fiber used in the present study, with 125-µm diameter, 30-µm holes, a 2.3-µm core, Δn=0.023, and 5.5-µm separation between the nearest hole (anode) and the core. Right, scanning-electron microscope picture of the ∼0.4-µm-thick silver layer deposited inside a 28-µm hole. The structure of the film is rough; however, the surface in contact with the glass is smooth and uniform.

Fig. 2
Fig. 2

Thickness of the silver film inside the fiber calculated through the measured electrical conductance. Heating increases the silver deposition rate and makes the film thicker in this region.

Fig. 3
Fig. 3

Left, detail of a line recorded in a silver film by laser ablation on a bulk sample. The process can be used to write arbitrary patterns. Right, geometrical arrangement to preserve the continuity of the ablated electrodes in fibers.

Fig. 4
Fig. 4

A 40-µm periodic structure recorded in the silver film in a twin-hole fiber.

Fig. 5
Fig. 5

In-fiber lithography scheme used for recording a periodic electrode, and real-time probing with EFISH.

Fig. 6
Fig. 6

Real-time monitoring of the EFISH signal as new periods are added to the fiber. For each recorded period the SH signal increases. Five points were recorded in this experiment, and more points could be added easily in an automated setup.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h=cVNa34(2πrL),

Metrics