Abstract

We demonstrate efficient generation of collinearly propagating, degenerate pulsed photon pairs based on a bulk periodically poled potassium titanyl phosphate pumped by an ultrashort-pulse laser. Using a single-mode fiber as a spatial mode filter, we detect approximately 3200 coincidence counts per second per milliwatt pump power in a Hanbury–Brown–Twiss-type experiment. The estimated photon-pair production rate is approximately 1.05 MHz/mW pump power. This is very promising for the realization of sources for quantum communication and metrology.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195–200 (1964).
  2. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
    [CrossRef] [PubMed]
  3. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric downconversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
    [CrossRef] [PubMed]
  4. A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–664 (1991).
    [CrossRef] [PubMed]
  5. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
    [CrossRef] [PubMed]
  6. D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
    [CrossRef] [PubMed]
  7. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
    [CrossRef] [PubMed]
  8. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
    [CrossRef] [PubMed]
  9. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
    [CrossRef]
  10. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
    [CrossRef]
  11. A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
    [CrossRef] [PubMed]
  12. Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
    [CrossRef] [PubMed]
  13. K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [CrossRef] [PubMed]
  14. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992).
    [CrossRef]
  15. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  16. P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  17. S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
    [CrossRef]
  18. K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
    [CrossRef] [PubMed]
  19. G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
    [CrossRef]
  20. K. Bannaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1379 (2001).
    [CrossRef]
  21. S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
    [CrossRef]
  22. E. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6 μm,” Opt. Lett. 27, 2115–2117 (2002).
    [CrossRef]
  23. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  24. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
    [CrossRef]
  25. H. Kosaka, Research Institute of Electrical Communication, Tohoku University, 2–1-1 Katahira, Aoba-ku, Sendai 980–8577, Japan (personal communication, 2003).
  26. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  27. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
    [CrossRef]
  28. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, UK, 2000).
  29. S. Wang, V. Pasiskevicius, F. Laurell, and K. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998).
    [CrossRef]

2004

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

2002

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

E. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6 μm,” Opt. Lett. 27, 2115–2117 (2002).
[CrossRef]

2001

K. Bannaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1379 (2001).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef] [PubMed]

2000

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

1999

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

1998

S. Wang, V. Pasiskevicius, F. Laurell, and K. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998).
[CrossRef]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

1997

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

1996

K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef] [PubMed]

1995

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1993

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

1992

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992).
[CrossRef]

1991

A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–664 (1991).
[CrossRef] [PubMed]

1988

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric downconversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

1970

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

1964

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195–200 (1964).

1963

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Albota, M. A.

Alley, C. O.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric downconversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Baldi, P.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

Bannaszek, K.

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195–200 (1964).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

Berglund, A.

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bonfrate, G.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

Boschi, D.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

Branca, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

Braunstein, S. L.

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

De Martini, F.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

Deutsch, D.

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

Ekert, A.

A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–664 (1991).
[CrossRef] [PubMed]

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

Franken, P. A.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Fuchs, C. A.

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Furusawa, A.

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Gisin, N.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Hardy, L.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992).
[CrossRef]

Karlsson, K.

Kawahara, K.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Kazansky, P. G.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

Kim, Y. H.

Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef] [PubMed]

Kimble, H. J.

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Konig, F.

Kuga, T.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Kuklewicz, C. E.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kulik, S. P.

Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef] [PubMed]

Kwiat, P.

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef] [PubMed]

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Laurell, F.

Mandel, L.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

Mason, E. J.

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef] [PubMed]

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

Naik, D. S.

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Ostrowsky, D. B.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

Pasiskevicius, V.

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Perterson, C.

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Polzik, E. S.

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Popescu, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

Pruneri, V.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

Rarity, J. G.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

Reidmatten, H.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

Sanaka, K.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Sergienko, A.

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

Shih, Y.

Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef] [PubMed]

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shih, Y. H.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric downconversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Sorense, J. L.

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Tanzilli, S.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

Tapster, P.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

Tittel, W.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Tittle, W.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

U’Ren, A. B.

Walmsley, I. A.

Wang, S.

Ward, J. F.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef] [PubMed]

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A.

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

E. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6 μm,” Opt. Lett. 27, 2115–2117 (2002).
[CrossRef]

Wooters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

Zbinden, H.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef] [PubMed]

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibers,” Appl. Phys. Lett. 75, 2356–2358 (1999).
[CrossRef]

Electron. Lett.

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[CrossRef]

Eur. Phys. J. D

S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Nature (London)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically-poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constrains,” Phys. Rev. A 69, 041801 (2004).
[CrossRef]

Phys. Rev. Lett.

K. Sanaka, K. Kawahara, and T. Kuga, “New high-efficient source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1124 (1998).
[CrossRef]

Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef] [PubMed]

K. Mattle, H. Weinfurter, P. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef] [PubMed]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric downconversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–664 (1991).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. Perterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1898 (1993).
[CrossRef] [PubMed]

Physics (Long Island City, N.Y.)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195–200 (1964).

Proc. R. Soc. London, Ser. A

D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992).
[CrossRef]

Rev. Mod. Phys.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Science

A. Furusawa, J. L. Sorense, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Other

H. Kosaka, Research Institute of Electrical Communication, Tohoku University, 2–1-1 Katahira, Aoba-ku, Sendai 980–8577, Japan (personal communication, 2003).

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, UK, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SHG wave power plotted versus the temperature of the PPKTP crystal. The pump power is 52 mW.

Fig. 2
Fig. 2

Measured spectrum of the second-harmonic pulse shown on a linear scale. The FWHM of the bandwidth is 0.18 nm with a peak wavelength of 400.194 nm. The power of the pump laser is 150.5 mW and the temperature of the PPKTP is 29 °C.

Fig. 3
Fig. 3

Experimental setup. BF, blue filter; DM, dichroic mirror; M, mirror; P, pinhole; ATT, attenuator; RF, red filter; OB, objective lens; FC, fiber connector; SMF, single-mode fiber; FB, fiber 50/50 beam splitter; D, detector; CC, coincidence circuit.

Fig. 4
Fig. 4

Coincidence counts (with accidental counts) plotted versus the temperature of the PPKTP crystal. The power pump is 1 mW and the coincidence window time is 4 ns.

Fig. 5
Fig. 5

Single counts of detector D1 (with accidental counts) plotted versus the temperature of the PPKTP crystal. The power pump is 1 mW.

Metrics