Abstract

Performing third-harmonic-generation (THG) microscopy with a cylindrically focused Gaussian beam results in significant differences from standard THG microscopy owing to the different phase-matching geometry. These differences are characterized analytically in the slowly varying envelope approximation. It is shown that THG is not observed in samples with normal dispersion even for line illumination. We use this to perform video-rate THG microscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
    [CrossRef] [PubMed]
  3. G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
    [CrossRef]
  4. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  5. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
    [CrossRef]
  6. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  8. D. Yelin and Y. Silberberg, “Third-harmonic microscopy in biology,” Microsc. Anal., Nov. 2000, pp. 13–16.
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  10. J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
    [CrossRef] [PubMed]
  11. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
    [CrossRef] [PubMed]
  12. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef] [PubMed]
  13. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
    [CrossRef] [PubMed]
  14. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
    [CrossRef]
  15. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
    [CrossRef]
  16. S. W. Hell and V. Andersen, “Space-multiplexed multifocal nonlinear microscopy,” J. Microsc. 202, 457–463 (2001).
    [CrossRef] [PubMed]
  17. K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
    [CrossRef]
  18. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28, 1918–1920 (2003).
    [CrossRef] [PubMed]
  19. M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
    [CrossRef]
  20. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1609 (2002).
    [CrossRef]
  21. R. Boyd, Nonlinear Optics (Academic, New York, 1992).
  22. V. V. Yakovlev and S. V. Govorkov, “Diagnostics of a surface layer disordering using optical third harmonic generation of a circular polarized light,” Appl. Phys. Lett. 79, 4136–4138 (2001).
    [CrossRef]
  23. D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28, 2315–2317 (2003).
    [CrossRef] [PubMed]
  24. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
    [CrossRef] [PubMed]
  25. E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
    [CrossRef]
  26. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kartner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27, 61–63 (2002).
    [CrossRef]
  27. D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
    [CrossRef]

2004

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

2003

2002

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
[CrossRef]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1609 (2002).
[CrossRef]

D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kartner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27, 61–63 (2002).
[CrossRef]

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

2001

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
[CrossRef] [PubMed]

S. W. Hell and V. Andersen, “Space-multiplexed multifocal nonlinear microscopy,” J. Microsc. 202, 457–463 (2001).
[CrossRef] [PubMed]

V. V. Yakovlev and S. V. Govorkov, “Diagnostics of a surface layer disordering using optical third harmonic generation of a circular polarized light,” Appl. Phys. Lett. 79, 4136–4138 (2001).
[CrossRef]

1999

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1998

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

1997

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
[CrossRef]

1996

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Addadi, L.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
[CrossRef]

Aizenberg, J.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
[CrossRef]

Andersen, V.

S. W. Hell and V. Andersen, “Space-multiplexed multifocal nonlinear microscopy,” J. Microsc. 202, 457–463 (2001).
[CrossRef] [PubMed]

Angelow, G.

Antolini, R.

Athey, B.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Beniash, E.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
[CrossRef]

Bewersdorf, J.

Bliton, A. C.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

Bouevitch, O.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Brakenhoff, G. J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998), http://www.opticsexpress.org.
[CrossRef] [PubMed]

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

Buist, A. H.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

Cheng, J.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

Cheng, J.-X.

Choudhury, A.

Chudoba, C.

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

Froner, E.

Fujimoto, J. G.

Fujita, K.

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

Gopinath, J. T.

Govorkov, S. V.

V. V. Yakovlev and S. V. Govorkov, “Diagnostics of a surface layer disordering using optical third harmonic generation of a circular polarized light,” Appl. Phys. Lett. 79, 4136–4138 (2001).
[CrossRef]

Hell, S. W.

S. W. Hell and V. Andersen, “Space-multiplexed multifocal nonlinear microscopy,” J. Microsc. 202, 457–463 (2001).
[CrossRef] [PubMed]

J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Ippen, E. P.

Jia, Y. K.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

Kaneko, T.

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

Kartner, F. X.

Kawata, S.

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

Kobayashi, M.

Korokotian, E.

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

Lewis, A.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Linial, M.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Loew, L.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Maiti, S.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Morgner, U.

Muller, M.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

Nakamura, O.

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

Norris, T.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28, 2315–2317 (2003).
[CrossRef] [PubMed]

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Oyamada, M.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

Parnas, D.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Pavone, F. S.

Peleg, G.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Pick, R.

Potma, E. O.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
[CrossRef] [PubMed]

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

Ripin, D. J.

Sacconi, L.

Scheuer, V.

Segal, M.

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

Shear, J. B.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28, 2315–2317 (2003).
[CrossRef] [PubMed]

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Squier, J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

Squier, J. A.

Stricker, J. H.

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Taghizadeh, M. R.

Takamatsu, T.

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27, 1324–1326 (2002).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28, 2315–2317 (2003).
[CrossRef] [PubMed]

Tschudi, T.

van Haastert, P. J. M.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
[CrossRef] [PubMed]

Wade, M. H.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

Webb, W. W.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Weiner, S.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
[CrossRef]

Wiersma, D. A.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
[CrossRef] [PubMed]

Williams, R. M.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Wilson, K. R.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1609 (2002).
[CrossRef]

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yakovlev, V. V.

V. V. Yakovlev and S. V. Govorkov, “Diagnostics of a surface layer disordering using optical third harmonic generation of a circular polarized light,” Appl. Phys. Lett. 79, 4136–4138 (2001).
[CrossRef]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Zheng, G.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

Zipfel, W. R.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Appl. Phys. B

D. Yelin, D. Oron, E. Korokotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium–sapphire laser,” Appl. Phys. B 74, s97–s101 (2002).
[CrossRef]

Appl. Phys. Lett.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

V. V. Yakovlev and S. V. Govorkov, “Diagnostics of a surface layer disordering using optical third harmonic generation of a circular polarized light,” Appl. Phys. Lett. 79, 4136–4138 (2001).
[CrossRef]

Bioimaging

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215–224 (1996).
[CrossRef]

Biophys. J.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

J. Microsc.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996).
[CrossRef] [PubMed]

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

S. W. Hell and V. Andersen, “Space-multiplexed multifocal nonlinear microscopy,” J. Microsc. 202, 457–463 (2001).
[CrossRef] [PubMed]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, and T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. 194, 528–531 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Struct. Biol.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004).
[CrossRef] [PubMed]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, “Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth,” Proc. R. Soc. London, Ser. B 264, 461–465 (1997).
[CrossRef]

Science

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997).
[CrossRef] [PubMed]

Other

D. Yelin and Y. Silberberg, “Third-harmonic microscopy in biology,” Microsc. Anal., Nov. 2000, pp. 13–16.

R. Boyd, Nonlinear Optics (Academic, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized THG signal, derived by integrating Eq. (5), as a function of the nondimensional phase mismatch bΔk for a Gaussian beam focused within a finite medium (depth of 10b) for the cases of a 2D focused Gaussian beam (solid black curve) and a 3D focused Gaussian beam (dashed black curve). Also plotted are the corresponding asymptotic values for an infinite medium (gray curves). As can be seen, the medium is sufficiently thick only for the 3D result to reach its asymptotic value.

Fig. 2
Fig. 2

Schematic setup for THG microscopy experiments with line illumination.

Fig. 3
Fig. 3

THG signal in a Z-scan measurement through a 130-µm cover glass. (a) Measured signal with line illumination (solid curve) and with point illumination (dashed curve). (b) Theoretical prediction for (a) obtained by integrating Eq. (5).

Fig. 4
Fig. 4

THG image of a single sea urchin larval spicule spread on a glass slide as obtained by grabbing a frame from the intensified CCD.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A(x, z)=A11+iζexp-x2w02(1+iζ),
A(x, y, z)=A11+iζexp-x2+y2w02(1+iζ),
2ikqAqz+2Aqx2=-4π(qω)2c2χ(q)A1q exp(iΔkz),
Aq(x, z)=Aq(z)1+iζexp-qx2w02(1+iζ),
dAqdz=i2qπωncχ(q)A1qexp(iΔkz)(1+iζ)(q-1)/2.
I2D0,Δk<012,Δk=0exp(-bΔk),Δk>0,
I3D0,Δk0(bΔk)2 exp(-bΔk),Δk>0.

Metrics