Abstract

The unclamped linear electro-optic coefficients r13 and r33 for lithium tantalate are known at only one wavelength, 632.8 nm, whereas the clamped coefficients are also known at 3.39 µm. In the unclamped mode the effects of mechanical changes caused by piezoelectric and elasto-optic effects are accounted for in the electro-optic coefficient. We demonstrate a novel technique that uses a ferroelectric domain micropatterned electro-optic deflector to measure the unclamped linear electro-optic coefficients r13 and r33 at any wavelength. Using this method, we have determined these values for lithium tantalate at 980, 1330, and 1558 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Optical Electronics (Holt, Rinehart and Winston, New York, 1985), p. 274.
  2. V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).
  3. K. T. Gahagan, J. L. Casson, V. Gopalan, and J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 5638–5642 (2001).
    [CrossRef]
  4. D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, “Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric domain micropatterning,” Appl. Opt. 40, 6236–6241 (2001).
    [CrossRef]
  5. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 265.
  6. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [CrossRef]
  7. A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 333.
  8. P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
    [CrossRef]
  9. Ref. 1, p. 281.
  10. T. Mitsui and S. Nomura, Ferroelectrics and Related Substances, Vol. 16 of Group III, Crystal and Solid State Physics, K. H. Hellwege and A. M. Hellwege, eds., of Landolt–Börnstein Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1981), pp. 157–161.
  11. F. Wang, “Calculation of the electro-optical and nonlinear optical coefficients of ferroelectric materials from their linear properties,” Phys. Rev. B 59, 9733–9736 (1999).
    [CrossRef]
  12. M. Aillerie, N. Théofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B: Lasers Opt. 70, 317–334 (2000).
    [CrossRef]
  13. J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
    [CrossRef]
  14. Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys. 77, 4632–4638 (1995).
    [CrossRef]
  15. V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180 degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
    [CrossRef]
  16. Ref. 1, p. 278.
  17. J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
    [CrossRef]
  18. M. J. Kawas, “Design and characterization of domain inverted electro-optic lens stacks on LiTaO 3,” M.S. thesis (Carnegie-Mellon University, Pittsburgh, Pa., 1996).
  19. Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
    [CrossRef]
  20. C. Baron, H. Cheng, and M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
    [CrossRef]
  21. C. Baron, H. Cheng, and M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds., Proc. SPIE 2700, 118–121 (1996).
    [CrossRef]
  22. F. Gervais and V. Fonseca, “Lithium tantalate,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), Vol. 3, pp. 777–805.
  23. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
    [CrossRef]
  24. J. L. Casson, “Near-IR tunable laser using an integrated lithium tantalate electro-optic scanner,” M.S. thesis (University of New Mexico, Albuquerque, N.M., 2001).
  25. J. L. Casson, L. Wang, N. J. C. Libatique, R. K. Jain, D. A. Scrymgeour, V. Gopalan, K. T. Gahagan, R. K. Sander, and J. M. Robinson, “Near-IR tunable laser with an integrated LiTaO3 electro-optic deflector,” Appl. Opt. 41, 6416–6419 (2002).
    [CrossRef] [PubMed]

2002 (2)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

J. L. Casson, L. Wang, N. J. C. Libatique, R. K. Jain, D. A. Scrymgeour, V. Gopalan, K. T. Gahagan, R. K. Sander, and J. M. Robinson, “Near-IR tunable laser with an integrated LiTaO3 electro-optic deflector,” Appl. Opt. 41, 6416–6419 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (2)

M. Aillerie, N. Théofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B: Lasers Opt. 70, 317–334 (2000).
[CrossRef]

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

1999 (4)

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

F. Wang, “Calculation of the electro-optical and nonlinear optical coefficients of ferroelectric materials from their linear properties,” Phys. Rev. B 59, 9733–9736 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

1998 (1)

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180 degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

1996 (2)

C. Baron, H. Cheng, and M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, and M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds., Proc. SPIE 2700, 118–121 (1996).
[CrossRef]

1995 (1)

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys. 77, 4632–4638 (1995).
[CrossRef]

1972 (1)

1966 (1)

P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
[CrossRef]

Aillerie, M.

M. Aillerie, N. Théofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B: Lasers Opt. 70, 317–334 (2000).
[CrossRef]

Amano, M.

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys. 77, 4632–4638 (1995).
[CrossRef]

Bae, B. S.

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

Ballman, A. A.

P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
[CrossRef]

Barad, Y.

Baron, C.

C. Baron, H. Cheng, and M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds., Proc. SPIE 2700, 118–121 (1996).
[CrossRef]

C. Baron, H. Cheng, and M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

Casson, J. L.

Cheng, H.

C. Baron, H. Cheng, and M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, and M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds., Proc. SPIE 2700, 118–121 (1996).
[CrossRef]

Chiu, Y.

Fang, J. C.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Fontana, M. D.

M. Aillerie, N. Théofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B: Lasers Opt. 70, 317–334 (2000).
[CrossRef]

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

Gahagan, K. T.

Gopalan, V.

J. L. Casson, L. Wang, N. J. C. Libatique, R. K. Jain, D. A. Scrymgeour, V. Gopalan, K. T. Gahagan, R. K. Sander, and J. M. Robinson, “Near-IR tunable laser with an integrated LiTaO3 electro-optic deflector,” Appl. Opt. 41, 6416–6419 (2002).
[CrossRef] [PubMed]

K. T. Gahagan, J. L. Casson, V. Gopalan, and J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 5638–5642 (2001).
[CrossRef]

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, “Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric domain micropatterning,” Appl. Opt. 40, 6236–6241 (2001).
[CrossRef]

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180 degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

Gupta, M. C.

C. Baron, H. Cheng, and M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds., Proc. SPIE 2700, 118–121 (1996).
[CrossRef]

C. Baron, H. Cheng, and M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

Jain, R. K.

Jang, J. H.

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

Jia, Q.

Jia, Q. X.

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

Kawas, M.

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

Kawas, M. J.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Kitamura, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

Koo, J.

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

Lee, C.

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

Lenzo, P. V.

P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
[CrossRef]

Libatique, N. J. C.

Mitchell, T. E.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, “Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric domain micropatterning,” Appl. Opt. 40, 6236–6241 (2001).
[CrossRef]

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180 degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

Nakamura, M.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

No, K.

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

Onuki, K.

Robinson, J. M.

Saku, T.

Sander, R. K.

Schlesinger, T. E.

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

Scrymgeour, D. A.

Shuto, Y.

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys. 77, 4632–4638 (1995).
[CrossRef]

Spencer, E. G.

P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
[CrossRef]

Stancil, D. D.

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

Takekawa, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

Théofanous, N.

M. Aillerie, N. Théofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B: Lasers Opt. 70, 317–334 (2000).
[CrossRef]

Turner, E. H.

P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
[CrossRef]

Uchida, N.

Wang, F.

F. Wang, “Calculation of the electro-optical and nonlinear optical coefficients of ferroelectric materials from their linear properties,” Phys. Rev. B 59, 9733–9736 (1999).
[CrossRef]

Wang, L.

Zou, J.

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B: Lasers Opt. (1)

M. Aillerie, N. Théofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B: Lasers Opt. 70, 317–334 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

J. Koo, C. Lee, J. H. Jang, K. No, and B. S. Bae, “Measurement of the linear electro-optic coefficients of sol-gel derived strontium barium niobate thin films using a two-beam po- larization interferometer,” Appl. Phys. Lett. 76, 2671–2673 (2000).
[CrossRef]

P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman, “Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Lett. 8, 81–82 (1966).
[CrossRef]

C. Baron, H. Cheng, and M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, “Shape-optimized electro-optic beam scanners: experiment,” IEEE Photonics Technol. Lett. 11, 66–68 (1999).
[CrossRef]

Integr. Ferroelectr. (1)

V. Gopalan, K. T. Gahagan, M. Kawas, Q. X. Jia, J. M. Robinson, T. E. Mitchell, T. E. Schlesinger, and D. D. Stancil, “Integration of electro-optic lenses and scanners on ferroelectric LiTaO3,” Integr. Ferroelectr. 25, 371–376 (1999).

J. Appl. Phys. (2)

Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys. 77, 4632–4638 (1995).
[CrossRef]

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180 degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys., Part 1 (1)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stocichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 1 41, L465–L467 (2002).
[CrossRef]

Phys. Rev. B (1)

F. Wang, “Calculation of the electro-optical and nonlinear optical coefficients of ferroelectric materials from their linear properties,” Phys. Rev. B 59, 9733–9736 (1999).
[CrossRef]

Proc. SPIE (1)

C. Baron, H. Cheng, and M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds., Proc. SPIE 2700, 118–121 (1996).
[CrossRef]

Other (9)

F. Gervais and V. Fonseca, “Lithium tantalate,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1998), Vol. 3, pp. 777–805.

J. L. Casson, “Near-IR tunable laser using an integrated lithium tantalate electro-optic scanner,” M.S. thesis (University of New Mexico, Albuquerque, N.M., 2001).

M. J. Kawas, “Design and characterization of domain inverted electro-optic lens stacks on LiTaO 3,” M.S. thesis (Carnegie-Mellon University, Pittsburgh, Pa., 1996).

Ref. 1, p. 278.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 333.

Ref. 1, p. 281.

T. Mitsui and S. Nomura, Ferroelectrics and Related Substances, Vol. 16 of Group III, Crystal and Solid State Physics, K. H. Hellwege and A. M. Hellwege, eds., of Landolt–Börnstein Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1981), pp. 157–161.

A. Yariv, Optical Electronics (Holt, Rinehart and Winston, New York, 1985), p. 274.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 265.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Arrangement of the uniaxial crystal, the applied electric field, laser propagation, and laser polarization. The applied field and the c axis of the crystal are parallel to z. The laser propagates along y with a linear polarization aligned along either z or x (propagating as an extraordinary or an ordinary ray, respectively). (b) Geometry of the horn-shaped deflector, showing the ferroelectric domains. W0 and W1 are the entrance and exit waists, respectively, of the deflector. L is the length of the deflector.

Fig. 2
Fig. 2

Schematic of the setup for measuring deflection performance. The infrared lasers used are a Ti:sapphire laser at 980 nm and fiber-coupled diodes at 1330 and 1558 nm.

Fig. 3
Fig. 3

Horn-shaped deflector’s deflection performance [mrad/kV] for (a) extraordinary polarized light at 632.8 nm: 32.6±0.2 (filled circles); 980 nm: 30.0±0.2 (open squares); 1330 nm: 27.5±0.1 (open triangles); and 1558 nm: 26.9±0.1 (crosses) and for (b) ordinary polarized light at 632.8 nm: 8.09±0.03 (filled circles); 980 nm: 7.03±0.03 (open squares); 1330 nm: 6.48±0.03 (open triangles); and 1558 nm: 6.77±0.04 (crosses).

Fig. 4
Fig. 4

BPM simulation of a horn-shaped deflector in LiTaO3 operating at 15 kV/mm for an extraordinary polarized light beam.

Fig. 5
Fig. 5

Calculated electro-optic coefficients r33 (diamonds) and r13 (squares) for LiTaO3 as a function of wavelength. The r13 and r33 values (crosses) from Landolt-Börnstein10 are also given for comparison. A theoretical curve of r33 for lithium niobate is also shown (dashed curve).11

Tables (2)

Tables Icon

Table 1 Literature Values for the Electro-Optic Coefficients r33 and r13 of LiTaO3

Tables Icon

Table 2 Electro-Optic Coefficients r33 and r13 for LiTaO3

Metrics